Recent Development in Numerical Simulations and Experimental Studies of Biomass Thermochemical Conversion

Research output: Contribution to journalReview articlepeer-review

5 Citations (SciVal)

Abstract

Biomass, as a renewable energy source, is available worldwide, is carbon neutral, and can be converted to various types of products depending on the market and on the specific applications. Among different technologies of biomass utilization, thermochemical conversion of biomass is the most efficient method with the shortest time scale of the process. Thermochemical conversion can be used to produce gas or liquid fuels, and it can be used for direct production of heat and electricity. Biomass thermochemical conversion is an active and fast growing field of research. New experimental methods with high spatial and temporal resolution such as laser diagnostics are being introduced, and numerical modeling of the physical and chemical details in biomass conversion is being conducted. In this review, we aim to provide an overview of the recent activities in the field of thermochemical conversion of biomass. Important parameters in the large scale conversion systems, such as temperature distribution, overall conversion rate of fuel, and distribution of different species, are strongly connected to the processes that occur on the scale of a single particle. Understanding the link between transport phenomena, chemical kinetics, and physical transformation on single particle scale can help to unravel issues such as emission and efficiency on the large scale. Hence, the focus of this review is on the single biomass particle, relevant to combustion and gasification systems. Special attention is paid to high fidelity numerical models and state-of-the-art experimental techniques that have been developed or employed over recent years to understand different aspects of biomass thermochemical conversion.

Original languageEnglish
Pages (from-to)6940–6963
Number of pages24
JournalEnergy and Fuels
Volume35
Issue number9
Early online date2021
DOIs
Publication statusPublished - 2021 May 6

Subject classification (UKÄ)

  • Bioenergy

Fingerprint

Dive into the research topics of 'Recent Development in Numerical Simulations and Experimental Studies of Biomass Thermochemical Conversion'. Together they form a unique fingerprint.

Cite this