Abstract
Fabrication and characterization of amperometric bienzyme L-glutamate sensitive microelectrodes are the prerequisite for monitoring changes Of L-glutamate concentration at glutamate-secreting cell cultures. The design of the glutamate microelectrodes is based on incorporating L-glutamate oxidase and horseradish peroxidase into a redox-hydrogel containing PVI19-dmeOs as the redox mediator and immobilizing this system onto the surface of platinum microdisk electrodes using, a dip-coating procedure. For amperometric measurements Of L-glutamate, these redox hydrogel-based bienzyme microelectrodes can be operated at low working potentials (-50 mV vs. Ag/AgCl) decreasing the influence of electroactive interferants possibly present in biological samples. The L-glutamate microsensors are characterized by a good operation stability and sensitivity (0.038+/-0.005 mAM(-1)), a low detection limit (0.5 muM in a conventional amperometric set-up and 0.03 muM in a Faraday cage, defined as three times the signal-to-noise ratio), a linear range up to 50 muM and a response time of about 35 s. The glutamate biosensors have been applied for the direct measurement Of L-glutamate release (upon chemical stimulation) from a population of immortalized hippocampal neurons (HN10 cells) demonstrating the possibility to amperometrically monitor in-Situ L-glutamate secretion from these cells.
Original language | English |
---|---|
Pages (from-to) | 393-399 |
Journal | Electroanalysis |
Volume | 14 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2002 |
Bibliographical note
The information about affiliations in this record was updated in December 2015.The record was previously connected to the following departments: Department of Chemistry (011001220), Analytical Chemistry (S/LTH) (011001004)
Subject classification (UKÄ)
- Chemical Sciences
Free keywords
- hippocampal neurons
- glutamate secretion
- microelectrode
- glutamate
- amperometric biosensor