Reductive cleavage of the O-O bond in multicopper oxidases: a QM/MM and QM study

Martin Srnec, Ulf Ryde, Lubomir Rulisek

Research output: Contribution to journalArticlepeer-review

18 Citations (SciVal)
139 Downloads (Pure)

Abstract

The key step in the reaction mechanism of multicopper oxidases (MCOs)-the cleavage of the O-O bond in O-2-has been investigated using combined quantum mechanical and molecular mechanical (QM/MM) methods. This process represents a reaction pathway from the peroxy intermediate after it accepts one electron from the nearby type-1 Cu site to the experimentally-observed native intermediate, which is the only fully oxidised catalytically relevant state in MCOs. Scans of the QM(DFT)/MM potential energy surface have allowed us to obtain estimates of the activation energies. Furthermore, vacuum calculations on a smaller model of the active site have allowed us to estimate the entropy contributions to the barrier height and to obtain further insight into the reaction by comparing the small cluster model with the QM/MM model, which includes the entire protein. Owing to the complicated electronic structure of these low-spin exchange coupled systems, multireference quantum chemical calculations at the complete-active space second-order perturbation theory (CASPT2) were used in an attempt to benchmark the barrier heights obtained at the DFT(B3LYP) level. Our best estimate of the activation barrier is Delta G = 60-65 kJ mol(-1), in good agreement with the experimental barrier of similar to 55 kJ mol(-1), which can be inferred from the experimental rate constant of k > 350 s(-1). It has also been shown that the reaction involves protonation of the O-2 moiety before bond cleavage. The proton likely comes from a nearby carboxylate residue which was recently suggested by the experiments.
Original languageEnglish
Pages (from-to)41-53
JournalFaraday Discussions
Volume148
DOIs
Publication statusPublished - 2011

Bibliographical note

The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Theoretical Chemistry (S) (011001039)

Subject classification (UKÄ)

  • Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Reductive cleavage of the O-O bond in multicopper oxidases: a QM/MM and QM study'. Together they form a unique fingerprint.

Cite this