Abstract
Phospholamban is an inhibitor of the sarcoplasmic reticulum Ca2+ transport apparent affinity for Ca2+ in cardiac muscle. This inhibitory effect of phospholamban can be relieved through its phosphorylation or ablation. To better characterize the regulatory mechanism of phospholamban, we examined the initial rates of Ca2+-uptake and Ca2+-ATPase activity under identical conditions, using sarcoplasmic reticulum-enriched preparations from phospholamban-deficient and wild-type hearts. The apparent coupling ratio, calculated by dividing the initial rates of Ca2+ transport by ATP hydrolysis, appeared to increase with increasing [Ca2+] in wild-type hearts. However, in the phospholamban-deficient hearts, this ratio was constant, and it was similar to the value obtained at high [Ca2+] in wild-type hearts. Phosphorylation of phospholamban by the catalytic subunit of protein kinase A in wild-type sarcoplasmic reticulum also resulted in a constant value of the apparent ratio of Ca2+ transported per ATP hydrolyzed, which was similar to that present in phospholamban-deficient hearts. Thus, the inhibitory effects of dephosphorylated phospholamban involve decreases in the apparent affinity of sarcoplasmic reticulum Ca2+ transport for Ca2+ and the efficiency of this transport system at low [Ca2+], both leading to prolonged relaxation in myocytes.
Original language | English |
---|---|
Pages (from-to) | 14176-14182 |
Number of pages | 7 |
Journal | Biochemistry |
Volume | 39 |
Issue number | 46 |
DOIs | |
Publication status | Published - 2000 Nov 21 |
Externally published | Yes |