Reversed Hysteresis during CO Oxidation over Pd75Ag25(100)

Vasco R. Fernandes, Maxime Van Den Bossche, Jan Knudsen, Mari H. Farstad, Johan Gustafson, Hilde J. Venvik, Henrik Grönbeck, Anne Borg

Research output: Contribution to journalArticlepeer-review

Abstract

CO oxidation over Pd(100) and Pd75Ag25(100) has been investigated by a combination of near-ambient-pressure X-ray photoelectron spectroscopy, quadrupole mass spectrometry, density functional theory calculations, and microkinetic modeling. For both surfaces, hysteresis is observed in the CO2 formation during the heating and cooling cycles. Whereas normal hysteresis with light-off temperature higher than extinction temperature is present for Pd(100), reversed hysteresis is observed for Pd75Ag25(100). The reversed hysteresis can be explained by dynamic changes in the surface composition. At the beginning of the heating ramp, the surface is rich in palladium, which gives a CO coverage that poisons the surface until the desorption rate becomes sufficiently high. The thermodynamic preference for an Ag-rich surface in the absence of adsorbates promotes diffusion of Ag from the bulk to the surface as CO desorbs. During the cooling ramp, an appreciable surface coverage is reached at temperatures too low for efficient diffusion of Ag back into the bulk. The high concentration of Ag in the surface leads to a high extinction temperature and, consequently, the reversed hysteresis.

Original languageEnglish
Pages (from-to)4154-4161
Number of pages8
JournalACS Catalysis
Volume6
Issue number7
DOIs
Publication statusPublished - 2016 Jul 1

Subject classification (UKÄ)

  • Physical Chemistry
  • Condensed Matter Physics

Free keywords

  • CO oxidation
  • DFT
  • hysteresis
  • microkinetic modeling
  • NAP-XPS
  • Pd(100)
  • PdAg(100)

Fingerprint

Dive into the research topics of 'Reversed Hysteresis during CO Oxidation over Pd75Ag25(100)'. Together they form a unique fingerprint.

Cite this