Rheological characterization of dilute acid pretreated softwood.

Magnus Wiman, Benny Palmqvist, Eva Tornberg, Gunnar Lidén

Research output: Contribution to journalArticlepeer-review

Abstract

Large-scale bioethanol production from lignocellulosic biomass will require high solids loading in the enzymatic hydrolysis step. However, slurries of pretreated lignocelluloses are complex fluids due to the fibrous nature, especially at high concentrations of water insoluble solids (WIS). A prerequisite for dealing with transport issues and for developing efficient full-scale processes is a fundamental understanding of the flow properties of pretreated lignocellulose. A comprehensive rheological characterization of dilute acid pretreated spruce has been carried out in this study, accounting for the effects of WIS concentration, particle size distribution (PSD), and the degree of enzymatic hydrolysis. The rheology of pretreated spruce slurries was found to be strongly dependent on the WIS concentration. The storage modulus (G'(LVR)) and yield stress showed typical power-law dependencies on volume fraction and WIS content. Milling of the pretreated material resulted in significantly higher yield stress and viscosity, likely due to narrower PSD, which suggests that the strength of the network of the coarsest fibers determines the rheology of these materials to a large extent. During enzymatic hydrolysis, yield stress and viscosity decreased dramatically, partly due to decreasing WIS content, but possibly also due to changes in fiber properties such as the chemical composition. Biotechnol. Bioeng. © 2010 Wiley Periodicals, Inc.
Original languageEnglish
Pages (from-to)1031-1041
JournalBiotechnology and Bioengineering
Volume108
Issue number5
DOIs
Publication statusPublished - 2011

Subject classification (UKÄ)

  • Chemical Engineering
  • Food Engineering

Fingerprint

Dive into the research topics of 'Rheological characterization of dilute acid pretreated softwood.'. Together they form a unique fingerprint.

Cite this