TY - JOUR
T1 - Risk Stratification of Type 2 Long-QT Syndrome Mutation Carriers with Normal QTc Interval
T2 - The Value of Sex, T-Wave Morphology, and Mutation Type
AU - Platonov, Pyotr G.
AU - McNitt, Scott
AU - Polonsky, Bronislava
AU - Rosero, Spencer Z.
AU - Kutyifa, Valentina
AU - Huang, Allison
AU - Moss, Arthur J.
AU - Zareba, Wojciech
PY - 2018
Y1 - 2018
N2 - Background: Long-QT (LQT) syndrome mutation carriers have higher risk of cardiac events than unaffected family members even in the absence of QTc prolongation. Changes in T-wave morphology may reflect penetrance of LQT syndrome mutations. We aimed to assess whether T-wave morphology may improve risk stratification of LQT2 mutation carriers with normal QTc interval. Methods: LQT2 mutation carriers with QTc <460 ms in men and <470 ms in women (n=154) were compared with unaffected family members (n=1007). Baseline ECGs recorded at age ≥18 years underwent blinded assessment. Flat, notched, or negative T waves in leads II or V5 were considered abnormal. Cox regression analysis was performed to assess the association between T-wave morphology, the presence of mutations in the pore region of KCNH2, and the risk of cardiac events defined as syncope, aborted cardiac arrest, defibrillator therapy, or sudden cardiac death. Sex-specific associations were estimated using interactions terms. Results: LQT2 female carriers with abnormal T-wave morphology had significantly higher risk of cardiac events compared with LQT2 female carriers with normal T waves (hazard ratio, 3.31; 95% confidence interval, 1.68-6.52; P=0.001), whereas this association was not significant in men. LQT2 men with pore location of mutations have significantly higher risk of cardiac events than those with nonpore mutations (hazard ratio, 6.01; 95% confidence interval, 1.50-24.08; P=0.011), whereas no such association was found in women. Conclusions: The risk of cardiac events in LQT2 carriers with normal QTc is associated with abnormal T-wave morphology in women and pore location of mutation in men. The findings further indicate sex-specific differences in phenotype and genotype relationship in LQT2 patients.
AB - Background: Long-QT (LQT) syndrome mutation carriers have higher risk of cardiac events than unaffected family members even in the absence of QTc prolongation. Changes in T-wave morphology may reflect penetrance of LQT syndrome mutations. We aimed to assess whether T-wave morphology may improve risk stratification of LQT2 mutation carriers with normal QTc interval. Methods: LQT2 mutation carriers with QTc <460 ms in men and <470 ms in women (n=154) were compared with unaffected family members (n=1007). Baseline ECGs recorded at age ≥18 years underwent blinded assessment. Flat, notched, or negative T waves in leads II or V5 were considered abnormal. Cox regression analysis was performed to assess the association between T-wave morphology, the presence of mutations in the pore region of KCNH2, and the risk of cardiac events defined as syncope, aborted cardiac arrest, defibrillator therapy, or sudden cardiac death. Sex-specific associations were estimated using interactions terms. Results: LQT2 female carriers with abnormal T-wave morphology had significantly higher risk of cardiac events compared with LQT2 female carriers with normal T waves (hazard ratio, 3.31; 95% confidence interval, 1.68-6.52; P=0.001), whereas this association was not significant in men. LQT2 men with pore location of mutations have significantly higher risk of cardiac events than those with nonpore mutations (hazard ratio, 6.01; 95% confidence interval, 1.50-24.08; P=0.011), whereas no such association was found in women. Conclusions: The risk of cardiac events in LQT2 carriers with normal QTc is associated with abnormal T-wave morphology in women and pore location of mutation in men. The findings further indicate sex-specific differences in phenotype and genotype relationship in LQT2 patients.
KW - genotype
KW - long-QT syndrome
KW - mutation
KW - risk
KW - sex
U2 - 10.1161/CIRCEP.117.005918
DO - 10.1161/CIRCEP.117.005918
M3 - Article
AN - SCOPUS:85060484367
SN - 1941-3149
VL - 11
JO - Circulation: Arrhythmia and Electrophysiology
JF - Circulation: Arrhythmia and Electrophysiology
IS - 7
M1 - e005918
ER -