Robust factorization

H Aanaes, R Fisker, Karl Åström, JM Carstensen

Research output: Contribution to journalArticlepeer-review

Abstract

Factorization algorithms for recovering structure and motion from an image stream have many advantages, but they usually require a set of well-tracked features. Such a set is in generally not available in practical applications. There is thus a need for making factorization algorithms deal effectively with errors in the tracked features. We propose a new and computationally efficient algorithm for applying an arbitrary errorfunction in the factorization scheme. This algorithm enables the use of robust statistical techniques and arbitrary noise models for the individual features. These techniques and models enable the factorization scheme to deal effectively with mismatched features, missing features, and noise on the individual features. The proposed approach further includes a new method for Euclidean reconstruction that significantly improves convergence of the factorization algorithms. The proposed algorithm has been implemented as a modification of the Christy-Horaud factorization scheme, which yields a perspective reconstruction. Based on this implementation, a considerable increase in error tolerance is demonstrated on real and synthetic data. The proposed scheme can, however, be applied to most other factorization algorithms.
Original languageEnglish
Pages (from-to)1215-1225
JournalIEEE Transactions on Pattern Analysis and Machine Intelligence
Volume24
Issue number9
DOIs
Publication statusPublished - 2002

Subject classification (UKÄ)

  • Mathematical Sciences

Free keywords

  • structure from motion
  • Euclidean reconstruction
  • perspective reconstruction
  • robust statistics
  • feature tracking

Fingerprint

Dive into the research topics of 'Robust factorization'. Together they form a unique fingerprint.

Cite this