Abstract
Root exudates can significantly modify microbial activity and soil organic matter (SOM) mineralization. However, how root exudates and their C/N stoichiometric ratios control paddy soil C mineralization is poorly understood. This study used a mixture of glucose, oxalic acid, and alanine as root exudate mimics for three C/N stoichiometric ratios (CN6, CN10, and CN80) to explore the underlying mechanisms involved in SOM mineralization. The input of root exudates enhanced CO2 emissions by 1.8–2.3-fold that of soil with only C additions (C-only). Artificial root exudates with low C/N ratios (CN6 and CN10) increased the metabolic quotient (qCO2) by 12% over those with higher stoichiometric ratios (CN80 and C-only), suggesting a relatively high energy demand for microorganisms to acquire organic N from SOM by increasing N-hydrolase production. The increase of stoichiometric ratios of C- to N-hydrolase (β-1,4-glucosidase to β-1,4-N-acetyl glucosaminidase) promoted SOM degradation compared to those involved in organic C- and N- degradation, which had a significant positive correlation with qCO2. The stoichiometric ratios of microbial biomass (MBC/MBN) were positively correlated with C use efficiency, indicating root exudates with higher C/N ratios provide an undersupply of N for microorganisms that trigger the release of N-degrading extracellular enzymes. Our findings showed that the C/N stoichiometry of root exudates controlled SOM mineralization by affecting the specific response of the microbial biomass through the activity of C- and N-releasing extracellular enzymes to adjust the microbial C/N ratio.
Original language | English |
---|---|
Pages (from-to) | 1193-1203 |
Journal | Land Degradation and Development |
Volume | 33 |
Issue number | 8 |
Early online date | 2022 Jan 7 |
DOIs | |
Publication status | Published - 2022 May |
Subject classification (UKÄ)
- Soil Science