Search for a new Z′ gauge boson in 4μ events with the ATLAS experiment

G. Aad, T.P.A. Åkesson, E.E. Corrigan, C. Doglioni, P.A. Ekman, J. Geisen, V. Hedberg, H. Herde, G. Jarlskog, B. Konya, E. Lytken, J.U. Mjörnmark, G.A. Mullier, R. Poettgen, N.D. Simpson, E. Skorda, O. Smirnova, L. Zwalinski, ATLAS Collaboration

Research output: Contribution to journalArticlepeer-review

Abstract

This paper presents a search for a new Z′ vector gauge boson with the ATLAS experiment at the Large Hadron Collider using pp collision data collected at s = 13 TeV, corresponding to an integrated luminosity of 139 fb −1. The new gauge boson Z′ is predicted by Lμ − Lτ models to address observed phenomena that can not be explained by the Standard Model. The search examines the four-muon (4μ) final state, using a deep learning neural network classifier to separate the Z′ signal from the Standard Model background events. The di-muon invariant masses in the 4μ events are used to extract the Z′ resonance signature. No significant excess of events is observed over the predicted background. Upper limits at a 95% confidence level on the Z′ production cross-section times the decay branching fraction of pp → Z′μμ → 4μ are set from 0.31 to 4.3 fb for the Z′ mass ranging from 5 to 81 GeV. The corresponding common coupling strengths, gZ′, of the Z′ boson to the second and third generation leptons above 0.003 – 0.2 have been excluded. [Figure not available: see fulltext.]. © 2023, The Author(s).
Original languageEnglish
Article number90
JournalJournal of High Energy Physics
Volume2023
Issue number7
DOIs
Publication statusPublished - 2023

Subject classification (UKÄ)

  • Subatomic Physics

Free keywords

  • Beyond Standard Model
  • Hadron-Hadron Scattering

Fingerprint

Dive into the research topics of 'Search for a new Z′ gauge boson in 4μ events with the ATLAS experiment'. Together they form a unique fingerprint.

Cite this