TY - JOUR
T1 - Search for a new Z′ gauge boson in 4μ events with the ATLAS experiment
AU - Aad, G.
AU - Åkesson, T.P.A.
AU - Corrigan, E.E.
AU - Doglioni, C.
AU - Ekman, P.A.
AU - Geisen, J.
AU - Hedberg, V.
AU - Herde, H.
AU - Jarlskog, G.
AU - Konya, B.
AU - Lytken, E.
AU - Mjörnmark, J.U.
AU - Mullier, G.A.
AU - Poettgen, R.
AU - Simpson, N.D.
AU - Skorda, E.
AU - Smirnova, O.
AU - Zwalinski, L.
AU - ATLAS Collaboration
PY - 2023
Y1 - 2023
N2 - This paper presents a search for a new Z′ vector gauge boson with the ATLAS experiment at the Large Hadron Collider using pp collision data collected at s = 13 TeV, corresponding to an integrated luminosity of 139 fb −1. The new gauge boson Z′ is predicted by Lμ − Lτ models to address observed phenomena that can not be explained by the Standard Model. The search examines the four-muon (4μ) final state, using a deep learning neural network classifier to separate the Z′ signal from the Standard Model background events. The di-muon invariant masses in the 4μ events are used to extract the Z′ resonance signature. No significant excess of events is observed over the predicted background. Upper limits at a 95% confidence level on the Z′ production cross-section times the decay branching fraction of pp → Z′μμ → 4μ are set from 0.31 to 4.3 fb for the Z′ mass ranging from 5 to 81 GeV. The corresponding common coupling strengths, gZ′, of the Z′ boson to the second and third generation leptons above 0.003 – 0.2 have been excluded. [Figure not available: see fulltext.]. © 2023, The Author(s).
AB - This paper presents a search for a new Z′ vector gauge boson with the ATLAS experiment at the Large Hadron Collider using pp collision data collected at s = 13 TeV, corresponding to an integrated luminosity of 139 fb −1. The new gauge boson Z′ is predicted by Lμ − Lτ models to address observed phenomena that can not be explained by the Standard Model. The search examines the four-muon (4μ) final state, using a deep learning neural network classifier to separate the Z′ signal from the Standard Model background events. The di-muon invariant masses in the 4μ events are used to extract the Z′ resonance signature. No significant excess of events is observed over the predicted background. Upper limits at a 95% confidence level on the Z′ production cross-section times the decay branching fraction of pp → Z′μμ → 4μ are set from 0.31 to 4.3 fb for the Z′ mass ranging from 5 to 81 GeV. The corresponding common coupling strengths, gZ′, of the Z′ boson to the second and third generation leptons above 0.003 – 0.2 have been excluded. [Figure not available: see fulltext.]. © 2023, The Author(s).
KW - Beyond Standard Model
KW - Hadron-Hadron Scattering
U2 - 10.1007/JHEP07(2023)090
DO - 10.1007/JHEP07(2023)090
M3 - Article
SN - 1029-8479
VL - 2023
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
IS - 7
M1 - 90
ER -