TY - JOUR
T1 - Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in √s=13 TeV pp collisions using the ATLAS detector
AU - Aad, G
AU - Åkesson, Torsten
AU - Bocchetta, Simona
AU - Bryngemark, Lene
AU - Corrigan, Eric Edward
AU - Doglioni, Caterina
AU - Gregersen, Kristian
AU - Brottmann Hansen, Eva
AU - Hedberg, Vincent
AU - Jarlskog, Göran
AU - Kalderon, Charles
AU - Kellermann, Edgar
AU - Konya, Balazs
AU - Lytken, Else
AU - Mankinen, Katja
AU - Marcon, Caterina
AU - Mjörnmark, Ulf
AU - Mullier, Geoffrey André Adrien
AU - Pöttgen, Ruth
AU - Poulsen, Trine
AU - Skorda, Eleni
AU - Smirnova, Oxana
AU - Zwalinski, L.
AU - ATLAS Collaboration
PY - 2020
Y1 - 2020
N2 - A search for the electroweak production of charginos and sleptons decaying into final states with two electrons or muons is presented. The analysis is based on 139 fb- 1 of proton–proton collisions recorded by the ATLAS detector at the Large Hadron Collider at s=13 TeV. Three R-parity-conserving scenarios where the lightest neutralino is the lightest supersymmetric particle are considered: the production of chargino pairs with decays via either W bosons or sleptons, and the direct production of slepton pairs. The analysis is optimised for the first of these scenarios, but the results are also interpreted in the others. No significant deviations from the Standard Model expectations are observed and limits at 95% confidence level are set on the masses of relevant supersymmetric particles in each of the scenarios. For a massless lightest neutralino, masses up to 420 Ge are excluded for the production of the lightest-chargino pairs assuming W-boson-mediated decays and up to 1 TeV for slepton-mediated decays, whereas for slepton-pair production masses up to 700 Ge are excluded assuming three generations of mass-degenerate sleptons. © 2020, CERN for the benefit of the ATLAS collaboration.
AB - A search for the electroweak production of charginos and sleptons decaying into final states with two electrons or muons is presented. The analysis is based on 139 fb- 1 of proton–proton collisions recorded by the ATLAS detector at the Large Hadron Collider at s=13 TeV. Three R-parity-conserving scenarios where the lightest neutralino is the lightest supersymmetric particle are considered: the production of chargino pairs with decays via either W bosons or sleptons, and the direct production of slepton pairs. The analysis is optimised for the first of these scenarios, but the results are also interpreted in the others. No significant deviations from the Standard Model expectations are observed and limits at 95% confidence level are set on the masses of relevant supersymmetric particles in each of the scenarios. For a massless lightest neutralino, masses up to 420 Ge are excluded for the production of the lightest-chargino pairs assuming W-boson-mediated decays and up to 1 TeV for slepton-mediated decays, whereas for slepton-pair production masses up to 700 Ge are excluded assuming three generations of mass-degenerate sleptons. © 2020, CERN for the benefit of the ATLAS collaboration.
U2 - 10.1140/epjc/s10052-019-7594-6
DO - 10.1140/epjc/s10052-019-7594-6
M3 - Article
SN - 1434-6044
VL - 80
JO - European Physical Journal C
JF - European Physical Journal C
IS - 2
M1 - 123
ER -