TY - JOUR
T1 - Search for heavy charged long-lived particles in proton–proton collisions at s=13TeV using an ionisation measurement with the ATLAS detector
AU - Aaboud, M
AU - Åkesson, Torsten
AU - Bocchetta, Simona
AU - Corrigan, Eric
AU - Doglioni, Caterina
AU - Gregersen, Kristian
AU - Brottmann Hansen, Eva
AU - Hedberg, Vincent
AU - Jarlskog, Göran
AU - Kalderon, Charles
AU - Kellermann, Edgar
AU - Konya, Balazs
AU - Lytken, Else
AU - Mankinen, Katja
AU - Mjörnmark, Ulf
AU - Mullier, Geoffrey
AU - Pöttgen, Ruth
AU - Poulsen, Trine
AU - Smirnova, Oxana
AU - Zwalinski, L
AU - ATLAS Collaboration
N1 - Export Date: 20 December 2018
PY - 2019
Y1 - 2019
N2 - This Letter presents a search for heavy charged long-lived particles produced in proton–proton collisions at s=13TeV at the LHC using a data sample corresponding to an integrated luminosity of 36.1fb−1 collected by the ATLAS experiment in 2015 and 2016. These particles are expected to travel with a velocity significantly below the speed of light, and therefore have a specific ionisation higher than any high-momentum Standard Model particle of unit charge. The pixel subsystem of the ATLAS detector is used in this search to measure the ionisation energy loss of all reconstructed charged particles which traverse the pixel detector. Results are interpreted assuming the pair production of R-hadrons as composite colourless states of a long-lived gluino and Standard Model partons. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on R-hadron production cross-sections and gluino masses are set, assuming the gluino always decays to two quarks and a 100 GeV stable neutralino. R-hadrons with lifetimes above 1.0 ns are excluded at the 95% confidence level, with lower limits on the gluino mass ranging between 1290 GeV and 2060 GeV. In the case of stable R-hadrons, the lower limit on the gluino mass at the 95% confidence level is 1890 GeV. © 2018 The Author
AB - This Letter presents a search for heavy charged long-lived particles produced in proton–proton collisions at s=13TeV at the LHC using a data sample corresponding to an integrated luminosity of 36.1fb−1 collected by the ATLAS experiment in 2015 and 2016. These particles are expected to travel with a velocity significantly below the speed of light, and therefore have a specific ionisation higher than any high-momentum Standard Model particle of unit charge. The pixel subsystem of the ATLAS detector is used in this search to measure the ionisation energy loss of all reconstructed charged particles which traverse the pixel detector. Results are interpreted assuming the pair production of R-hadrons as composite colourless states of a long-lived gluino and Standard Model partons. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on R-hadron production cross-sections and gluino masses are set, assuming the gluino always decays to two quarks and a 100 GeV stable neutralino. R-hadrons with lifetimes above 1.0 ns are excluded at the 95% confidence level, with lower limits on the gluino mass ranging between 1290 GeV and 2060 GeV. In the case of stable R-hadrons, the lower limit on the gluino mass at the 95% confidence level is 1890 GeV. © 2018 The Author
U2 - 10.1016/j.physletb.2018.10.055
DO - 10.1016/j.physletb.2018.10.055
M3 - Article
SN - 0370-2693
VL - 788
SP - 96
EP - 116
JO - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
JF - Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
ER -