Search for heavy resonances decaying into a pair of Z bosons in the ℓ+ℓ-ℓ′ +ℓ′ - and ℓ+ℓ-νν¯ final states using 139 fb - 1 of proton–proton collisions at √s=13 TeV with the ATLAS detector

G. Aad, Torsten Åkesson, Simona Bocchetta, Eric Edward Corrigan, Caterina Doglioni, Jannik Geisen, Kristian Gregersen, Eva Brottmann Hansen, Vincent Hedberg, Göran Jarlskog, Edgar Kellermann, Balazs Konya, Else Lytken, Katja Mankinen, Caterina Marcon, Ulf Mjörnmark, Geoffrey André Adrien Mullier, Ruth Pöttgen, Trine Poulsen, Eleni SkordaOxana Smirnova, L. Zwalinski, ATLAS Collaboration

Research output: Contribution to journalArticlepeer-review

Abstract

A search for heavy resonances decaying into a pair of Z bosons leading to ℓ+ℓ-ℓ′ +ℓ′ - and ℓ+ℓ-νν¯ final states, where ℓ stands for either an electron or a muon, is presented. The search uses proton–proton collision data at a centre-of-mass energy of 13 TeV collected from 2015 to 2018 that corresponds to the integrated luminosity of 139 fb - 1 recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. Different mass ranges spanning 200 GeV to 2000 GeV for the hypothetical resonances are considered, depending on the final state and model. In the absence of a significant observed excess, the results are interpreted as upper limits on the production cross section of a spin-0 or spin-2 resonance. The upper limits for the spin-0 resonance are translated to exclusion contours in the context of Type-I and Type-II two-Higgs-doublet models, and the limits for the spin-2 resonance are used to constrain the Randall–Sundrum model with an extra dimension giving rise to spin-2 graviton excitations. © 2021, CERN for the benefit of the ATLAS collaboration.
Original languageEnglish
Article number332
JournalEuropean Physical Journal C
Volume81
Issue number4
DOIs
Publication statusPublished - 2021

Subject classification (UKÄ)

  • Physical Sciences

Fingerprint

Dive into the research topics of 'Search for heavy resonances decaying into a pair of Z bosons in the ℓ+ℓ-ℓ′ +ℓ′ - and ℓ+ℓ-νν¯ final states using 139 fb - 1 of proton–proton collisions at √s=13 TeV with the ATLAS detector'. Together they form a unique fingerprint.

Cite this