Search for pair production of heavy vectorlike quarks decaying into hadronic final states in pp collisions at s =13 TeV with the ATLAS detector

M Aaboud, Torsten Åkesson, Simona Bocchetta, Eric Corrigan, Caterina Doglioni, Eva Brottmann Hansen, Vincent Hedberg, Göran Jarlskog, Charles Kalderon, Edgar Kellermann, Balazs Konya, Else Lytken, Katja Mankinen, Ulf Mjörnmark, Ruth Pöttgen, Trine Poulsen, Oxana Smirnova, Oleksandr Viazlo, L Zwalinski, ATLAS Collaboration

Research output: Contribution to journalArticlepeer-review

Abstract

A search is presented for the pair production of heavy vectorlike quarks, TT or BB, that decay into final states with jets and no reconstructed leptons. Jets in the final state are classified using a deep neural network as arising from hadronically decaying W/Z bosons, Higgs bosons, top quarks, or background. The analysis uses data from the ATLAS experiment corresponding to 36.1 fb-1 of proton-proton collisions with a center-of-mass energy of s=13 TeV delivered by the Large Hadron Collider in 2015 and 2016. No significant deviation from the Standard Model expectation is observed. Results are interpreted assuming the vectorlike quarks decay into a Standard Model boson and a third-generation-quark, T→Wb,Ht,Zt or B→Wt,Hb,Zb, for a variety of branching ratios. At 95% confidence level, the observed (expected) lower limit on the vectorlike B-quark mass for a weak-isospin doublet (B, Y) is 950 (890) GeV, and the lower limits on the masses for the pure decays B→Hb and T→Ht, where these results are strongest, are 1010 (970) GeV and 1010 (1010) GeV, respectively. © 2018 CERN, for the ATLAS Collaboration. Published by the American Physical Society.
Original languageEnglish
Article number092005
JournalPhysical Review D
Volume98
Issue number9
DOIs
Publication statusPublished - 2018

Bibliographical note

Export Date: 20 December 2018

Subject classification (UKÄ)

  • Subatomic Physics

Fingerprint

Dive into the research topics of 'Search for pair production of heavy vectorlike quarks decaying into hadronic final states in pp collisions at s =13 TeV with the ATLAS detector'. Together they form a unique fingerprint.

Cite this