TY - JOUR
T1 - Search for resonant and non-resonant Higgs boson pair production in the bb¯ τ+τ− decay channel using 13 TeV pp collision data from the ATLAS detector
AU - Aad, G.
AU - Åkesson, T.P.A.
AU - Corrigan, E.E.
AU - Doglioni, C.
AU - Geisen, J.
AU - Hansen, E.
AU - Hedberg, V.
AU - Jarlskog, G.
AU - Konya, B.
AU - Lytken, E.
AU - Mankinen, K.H.
AU - Marcon, C.
AU - Mjörnmark, J.U.
AU - Mullier, G.A.
AU - Poettgen, R.
AU - Simpson, N.D.
AU - Skorda, E.
AU - Smirnova, O.
AU - Zwalinski, L.
AU - ATLAS Collaboration
PY - 2023
Y1 - 2023
N2 - A search for Higgs boson pair production in events with two b-jets and two τ-leptons is presented, using a proton–proton collision dataset with an integrated luminosity of 139 fb −1 collected at s = 13 TeV by the ATLAS experiment at the LHC. Higgs boson pairs produced non-resonantly or in the decay of a narrow scalar resonance in the mass range from 251 to 1600 GeV are targeted. Events in which at least one τ-lepton decays hadronically are considered, and multivariate discriminants are used to reject the backgrounds. No significant excess of events above the expected background is observed in the non-resonant search. The largest excess in the resonant search is observed at a resonance mass of 1 TeV, with a local (global) significance of 3.1σ (2.0σ). Observed (expected) 95% confidence-level upper limits are set on the non-resonant Higgs boson pair-production cross-section at 4.7 (3.9) times the Standard Model prediction, assuming Standard Model kinematics, and on the resonant Higgs boson pair-production cross-section at between 21 and 900 fb (12 and 840 fb), depending on the mass of the narrow scalar resonance. [Figure not available: see fulltext.] © 2023, The Author(s).
AB - A search for Higgs boson pair production in events with two b-jets and two τ-leptons is presented, using a proton–proton collision dataset with an integrated luminosity of 139 fb −1 collected at s = 13 TeV by the ATLAS experiment at the LHC. Higgs boson pairs produced non-resonantly or in the decay of a narrow scalar resonance in the mass range from 251 to 1600 GeV are targeted. Events in which at least one τ-lepton decays hadronically are considered, and multivariate discriminants are used to reject the backgrounds. No significant excess of events above the expected background is observed in the non-resonant search. The largest excess in the resonant search is observed at a resonance mass of 1 TeV, with a local (global) significance of 3.1σ (2.0σ). Observed (expected) 95% confidence-level upper limits are set on the non-resonant Higgs boson pair-production cross-section at 4.7 (3.9) times the Standard Model prediction, assuming Standard Model kinematics, and on the resonant Higgs boson pair-production cross-section at between 21 and 900 fb (12 and 840 fb), depending on the mass of the narrow scalar resonance. [Figure not available: see fulltext.] © 2023, The Author(s).
KW - Hadron-Hadron Scattering
KW - Higgs Physics
KW - Proton-Proton Scattering
U2 - 10.1007/JHEP07(2023)040
DO - 10.1007/JHEP07(2023)040
M3 - Article
SN - 1029-8479
VL - 2023
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
IS - 7
M1 - 40
ER -