Searching for binary and nonbinary block and convolutional LDPC codes

Irina Bocharova, Boris Kudryashov, Rolf Johannesson

Research output: Contribution to journalArticlepeer-review

Abstract

A unified approach to search for and optimize codes determined by their sparse parity-check matrices is presented. Replacing the nonzero elements of a binary parity-check matrix (the base or parent matrix) either by circulants or by companion matrices of elements from a finite field GF(2m), we obtain quasi-cyclic low-density parity-check (LDPC) block codes and binary images of nonbinary LDPC block codes, respectively. By substituting monomials of a formal variable D, we obtain the polynomial description of an LDPC convolutional code. A set of performance measures applicable to different classes of LDPC codes is considered, and a greedy algorithm for code performance optimization is presented. The heart of the new optimization algorithm is a fast procedure for searching for LDPC codes with large girth of their Tanner graphs. For a few classes of LDPC codes, examples of codes combining good error-correcting performance with compact representation are obtained. In particular, we present optimized convolutional LDPC codes and conclude that the LDPC block codes are still superior to their convolutional counterparts if both decoding complexity and coding delay are considered. Moreover, a specific channel model can easily be embedded into the optimization loop. Thereby, the code can be optimized for a specific channel. The efficiency of such an optimization is demonstrated via an example of faster than Nyquist (FTN) signaling using LDPC codes. The FTN strategy combined with a rate R = 1/2 LDPC code of length 64800 optimized for effective data rate R = 3/4 gains more than 0.5 dB compared with the standard LDPC codes of the same rate and length. The obtained gain corresponds to transmission at the capacity of the binary input additive white Gaussian noise channel. In most numerical examples, we consider codes with bidiagonal structure of the parity-check matrix. This restriction preserves low encoding complexity and allows fair comparison with codes selected for - ommunication standards.
Original languageEnglish
Pages (from-to)163-183
JournalIEEE Transactions on Information Theory
Volume62
Issue number1
DOIs
Publication statusPublished - 2016

Subject classification (UKÄ)

  • Electrical Engineering, Electronic Engineering, Information Engineering

Fingerprint

Dive into the research topics of 'Searching for binary and nonbinary block and convolutional LDPC codes'. Together they form a unique fingerprint.

Cite this