Abstract
A facile and green synthesis of six-membered cyclic carbonates, the potential monomers for isocyanate-free polyurethanes and polycarbonates, was achieved by transesterification of diols with dimethyl carbonate catalyzed by immobilized Candida antarctica lipase B, Novozym (R) 435, followed by thermal cyclization in a solvent-free medium. The difference in the chemospecificity of the lipase for the primary, secondary and tertiary alcohols as acyl acceptors was utilized to obtain a highly chemoselective synthesis of the cyclic carbonate in high yield. In the lipase-catalyzed reaction with diols, the product contained almost equal proportions of mono- and di-carbonates with 1,3-propanediol having two primary alcohols, a higher proportion of mono-carbonate with 1,3-butanediol having a primary and a secondary alcohol, and mainly mono-carbonate with 3-methyl-1,3-butanediol having a primary and a tertiary alcohol. The chemospecificity of cyclic carbonates formed by thermal treatment at 90 degrees C was closely related to the proportion of mono-carbonate. The yield of cyclic carbonate was 99.3% with 3-methyl-1,3-butanediol, 85.5% with 1,3-butanediol, and 43.2% with 1,3-propanediol.
Original language | English |
---|---|
Pages (from-to) | 797-802 |
Journal | Advanced Synthesis & Catalysis |
Volume | 354 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2012 |
Subject classification (UKÄ)
- Industrial Biotechnology
Free keywords
- 3-propanediol
- transesterification
- 3-methyl-1
- chemoselectivity
- 1
- 3-butanediol
- thermal cyclization