Sequential UV-biological degradation of polycyclic aromatic hydrocarbons in two-phases partitioning bioreactors

Benoit Guieysse, Gunilla Viklund

Research output: Contribution to journalArticlepeer-review

31 Citations (SciVal)

Abstract

A method based on U-V-irradiation in organic solvent followed by transfer of the remaining pollutants into silicone oil for subsequent biodegradation in a biphasic system inoculated with a phenanthrene degrading Pseudomonas sp. was tested for the treatment of various mixtures of PAHs. Acetone was first selected as the most suitable solvent compared to methanol, acetonitrile and silicone oil for the removal of pyrene and phenanthrene. The sequential treatment was then applied to the treatment of a mixture of fluorene, phenanthrene, anthracene, fluoranthrene, pyrene, benzo(a)anthracene and benzo(a)pyrene in acetone. These compounds were photodegraded in the following order of initial removal rates (mg l(-1) d(-1)): benzo(a)pyrene (7.8) > anthracene (5.0) > benzo(a)anthracene (2.5) > fluoranthrene (1.8) > pyrene (1.5) > phenanthrene (1.2) > fluorene (0.2). U-V-treatment allowed complete removal of, anthracene, benzo(a)anthracene and benzo(a)pyrene and removals of 63% of pyrene and 37% of fluorene after 434h or irradiation. The subsequent biological treatment removed the remaining phenanthrene and fluorene by 100% and 90%, respectively, after 790h of cultivation. Although less efficient due to the presence of interfering compounds, the UV-biological treatment of a soil extract allowed a 63% removal of the seven PAHs named above. Microbial growth did not occur when the pollutants were directly supplied to the microorganism showing that biphasic systems reduced the toxicity effects cause by mixtures of PAHs at high concentrations. This study demonstrates the potential of selective UV treatment of high molecular weight PAHs followed by biological treatment of the low molecular weight species in biphasic systems. (c) 2004 Elsevier Ltd. All rights reserved.
Original languageEnglish
Pages (from-to)369-376
JournalChemosphere
Volume59
Issue number3
DOIs
Publication statusPublished - 2005

Bibliographical note

The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Biotechnology (LTH) (011001037), Center for Chemistry and Chemical Engineering (011001000)

Subject classification (UKÄ)

  • Environmental Sciences

Fingerprint

Dive into the research topics of 'Sequential UV-biological degradation of polycyclic aromatic hydrocarbons in two-phases partitioning bioreactors'. Together they form a unique fingerprint.

Cite this