Abstract
Understanding the genetic architecture of disease is an enormous challenge, and should be guided by evolutionary principles. Recent studies in evolutionary genetics show that sexual selection can have a profound influence on the genetic architecture of complex traits. Here, we summarise data from heritability studies and genome-wide association studies (GWASs) showing that common genetic variation influences many diseases and medically relevant traits in a sex-dependent manner. In addition, we discuss how the discovery of sex-dependent effects in population samples is improved by joint interaction analysis (rather than separate-sex), as well as by recently developed software. Finally, we argue that although genetic variation that has sex-dependent effects on disease risk could be maintained by mutation-selection balance and genetic drift, recent evidence indicates that intra-locus sexual conflict could be a powerful influence on complex trait architecture, and maintain sex-dependent disease risk alleles in a population because they are beneficial to the opposite sex.
Original language | English |
---|---|
Pages (from-to) | 453-463 |
Journal | Trends in Genetics |
Volume | 30 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2014 |
Subject classification (UKÄ)
- Biological Sciences