Abstract
High-spin states in Mo-86 were studied by means of the fusion evaporation reaction Ni-58(S-32,2p2n) Mo-86 at 135 MeV beam energy. Charged-particle-gamma gamma and -gamma gamma gamma coincidences recorded with the early implementation of the GAMMASPHERE array and the MICROBALL charged-particle detection system were used to largely extend the level scheme of the T-tau=1 nucleus Mo-86 to a possible spin of I=24h at 13 MeV excitation energy. The excitation scheme is compared to neighboring nuclei. There is evidence for enhanced shell-model influence in the 4 quasiparticle region (I=12-16h). The observed (pi=+,alpha=0) sequence at spin I greater than or equal to 16 h appears to be associated with a triaxial collective rotational band. This interpretation is supported by calculations within the configuration-dependent shell-correction approach with the cranked Nilsson potential.
Original language | English |
---|---|
Pages (from-to) | 117-124 |
Journal | Physical Review C (Nuclear Physics) |
Volume | 54 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1996 |
Bibliographical note
1Subject classification (UKÄ)
- Subatomic Physics