Abstract
P>The effects of drought on the Amazon rainforest are potentially large but remain poorly understood. Here, carbon (C) cycling after 5 yr of a large-scale through-fall exclusion (TFE) experiment excluding about 50% of incident rainfall from an eastern Amazon rainforest was compared with a nearby control plot. Principal C stocks and fluxes were intensively measured in 2005. Additional minor components were either quantified in later site measurements or derived from the available literature. Total ecosystem respiration (R-eco) and total plant C expenditure (PCE, the sum of net primary productivity (NPP) and autotrophic respiration (R-auto)), were elevated on the TFE plot relative to the control. The increase in PCE and R-eco was mainly caused by a rise in R-auto from foliage and roots. Heterotrophic respiration did not differ substantially between plots. NPP was 2.4 +/- 1.4 t C ha-1 yr-1 lower on the TFE than the control. Ecosystem carbon use efficiency, the proportion of PCE invested in NPP, was lower in the TFE plot (0.24 +/- 0.04) than in the control (0.32 +/- 0.04). Drought caused by the TFE treatment appeared to drive fundamental shifts in ecosystem C cycling with potentially important consequences for long-term forest C storage.
Original language | English |
---|---|
Pages (from-to) | 608-621 |
Journal | New Phytologist |
Volume | 187 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2010 |
Externally published | Yes |
Subject classification (UKÄ)
- Physical Geography
Free keywords
- Amazon rain forest
- carbon cycling
- carbon dioxide
- carbon use
- efficiency
- drought
- gross primary productivity
- net primary
- productivity
- partitioning