Short-term ammonium supply induces cellular defence to prevent oxidative stress in Arabidopsis leaves

Anna Podgórska, Maria Burian, Anna M. Rychter, Allan G. Rasmusson, Bozena Szal

Research output: Contribution to journalArticlepeer-review

10 Citations (SciVal)

Abstract

Plants can assimilate nitrogen from soil pools of both ammonium and nitrate, and the relative levels of these two nitrogen sources are highly variable in soil. Long-term ammonium nutrition is known to cause damage to Arabidopsis that has been linked to mitochondrial oxidative stress. Using hydroponic cultures, we analysed the consequences of rapid shifts between nitrate and ammonium nutrition. This did not induce growth retardation, showing that Arabidopsis can compensate for the changes in redox metabolism associated with the variations in nitrogen redox status. During the first 3h of ammonium treatment, we observed distinct transient shifts in reactive oxygen species (ROS), low-mass antioxidants, ROS-scavenging enzymes, and mitochondrial alternative electron transport pathways, indicating rapid but temporally separated changes in chloroplastic, mitochondrial and cytosolic ROS metabolism. The fast induction of antioxidant defences significantly lowered intracellular H2O2 levels, and thus protected Arabidopsis leaves from oxidative stress. On the other hand elevated extracellular ROS production in response to ammonium supply may be involved in signalling. The response pattern displays an intricate plasticity of Arabidopsis redox metabolism to minimise stress in responses to nutrient changes.

Original languageEnglish
Pages (from-to)65-83
JournalPhysiologia Plantarum
Volume160
Issue number1
Early online date2017 Feb 14
DOIs
Publication statusPublished - 2017 May

Subject classification (UKÄ)

  • Biochemistry and Molecular Biology
  • Botany

Fingerprint

Dive into the research topics of 'Short-term ammonium supply induces cellular defence to prevent oxidative stress in Arabidopsis leaves'. Together they form a unique fingerprint.

Cite this