Abstract
A major uncertainty in the estimation of soils acting as net carbon (C) sinks or sources stem from the effects of anthropogenic nitrogen (N) input on the balance between plant C input and soil C loss. In contrast to the generally observed increasing pattern of plant C input, the response of soil C loss to increased N deposition remains elusive, largely due to its large temporal variation. Here simultaneous measurements of two major soil C loss pathways, including dissolved organic carbon (DOC) leaching and soil respiration, were conducted for 5 and 3 yr, respectively, to assess the effects of N addition on soil C loss in an N-limited montane forest. The effects were seasonal, depth and N level dependent and the two pathways responded asynchronously to N addition. Significant decreases in DOC concentrations and fluxes in leachates from the organic layer were observed during autumn/winter under a high N addition rate (40 kg N/ha/yr). No significant impact of N addition on DOC concentrations or fluxes was observed for leachates from the mineral soil horizon. Biodegradability was low for DOC from both soil layers and was not consistently influenced by N addition. Soil respiration was significantly decreased under high N addition. Annual soil C loss (estimated by summing DOC leaching from the mineral horizon and soil respiration) showed that N addition reduced soil C loss consistently over years, implying that the forest soil is likely a C sink under excess N deposition, which should be confirmed with longer term monitoring.
Original language | English |
---|---|
Article number | e2022JG006829 |
Journal | Journal of Geophysical Research: Biogeosciences |
Volume | 127 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2022 |
Subject classification (UKÄ)
- Soil Science
Free keywords
- aromaticity of DOC
- biodegradability
- CO
- dissolved organic carbon leaching
- nitrogen deposition
- soil carbon