Single-Molecule Magnets DyM2N@C80and Dy2MN@C80(M=Sc, Lu): The Impact of Diamagnetic Metals on Dy3++Magnetic Anisotropy, Dy···Dy Coupling, and Mixing of Molecular and Lattice Vibrations

Lukas Spree, Christin Schlesier, Aram Kostanyan, Rasmus Westerström, Thomas Greber, Bernd Büchner, S. M. Avdoshenko, A Popov

Research output: Contribution to journalArticlepeer-review

Abstract

The substitution of scandium in fullerene single‐molecule magnets (SMMs) DySc2N@C80 and Dy2ScN@C80 by lutetium has been studied to explore the influence of the diamagnetic metal on the SMM performance of dysprosium nitride clusterfullerenes. The use of lutetium led to an improved SMM performance of DyLu2N@C80, which shows a higher blocking temperature of magnetization (TB=9.5 K), longer relaxation times, and broader hysteresis than DySc2N@C80 (TB=6.9 K). At the same time, Dy2LuN@C80 was found to have a similar blocking temperature of magnetization to Dy2ScN@C80 (TB=8 K), but substantially different interactions between the magnetic moments of the dysprosium ions in the Dy2MN clusters. Surprisingly, although the intramolecular dipolar interactions in Dy2LuN@C80 and Dy2ScN@C80 are of similar strength, the exchange interactions in Dy2LuN@C80 are close to zero. Analysis of the low‐frequency molecular and lattice vibrations showed strong mixing of the lattice modes and endohedral cluster librations in k‐space. This mixing simplifies the spin–lattice relaxation by conserving the momentum during the spin flip and helping to distribute the moment and energy further into the lattice.
Original languageEnglish
Pages (from-to)2436-2449
Number of pages14
JournalChemistry: A European Journal
Volume26
Issue number11
DOIs
Publication statusPublished - 2020

Subject classification (UKÄ)

  • Inorganic Chemistry
  • Condensed Matter Physics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Single-Molecule Magnets DyM2N@C80and Dy2MN@C80(M=Sc, Lu): The Impact of Diamagnetic Metals on Dy3++Magnetic Anisotropy, Dy···Dy Coupling, and Mixing of Molecular and Lattice Vibrations'. Together they form a unique fingerprint.

Cite this