High hyperdiploid acute lymphoblastic leukemia (ALL) is one of the most common malignancies in children. The main driver event of this disease is a nonrandom aneuploidy consisting of gains of whole chromosomes but without overt evidence of chromosomal instability (CIN). Here, we investigated the frequency and severity of defective sister chromatid cohesion—a phenomenon related to CIN—in primary pediatric ALL. We found that a large proportion (86%) of hyperdiploid cases displayed aberrant cohesion, frequently severe, to compare with 49% of ETV6/RUNX1-positive ALL, which mostly displayed mild defects. In hyperdiploid ALL, cohesion defects were associated with increased chromosomal copy number heterogeneity, which could indicate increased CIN. Furthermore, cohesion defects correlated with RAD21 and NCAPG mRNA expression, suggesting a link to reduced cohesin and condensin levels in hyperdiploid ALL. Knockdown of RAD21 in an ALL cell line led to sister chromatid cohesion defects, aberrant mitoses, and increased heterogeneity in chromosomal copy numbers, similar to what was seen in primary hyperdiploid ALL. In summary, our study shows that aberrant sister chromatid cohesion is frequent but heterogeneous in pediatric high hyperdiploid ALL, ranging from mild to very severe defects, and possibly due to low cohesin or condensin levels. Cases with high levels of aberrant chromosome cohesion displayed increased chromosomal copy number heterogeneity, possibly indicative of increased CIN. These abnormalities may play a role in the clonal evolution of hyperdiploid pediatric ALL.

Original languageEnglish
Pages (from-to)410-417
Number of pages8
JournalGenes Chromosomes and Cancer
Issue number6
Early online date2020 Dec 20
Publication statusPublished - 2021 Jun 1

Subject classification (UKÄ)

  • Cancer and Oncology
  • Medical Genetics

Free keywords

  • acute lymphoblastic leukemia
  • aneuploidy
  • chromosomal instability
  • hyperdiploidy
  • sister chromatid cohesion


Dive into the research topics of 'Sister chromatid cohesion defects are associated with chromosomal copy number heterogeneity in high hyperdiploid childhood acute lymphoblastic leukemia'. Together they form a unique fingerprint.

Cite this