Size-Dependent Effects of Nanoparticles on Enzymes in the Blood Coagulation Cascade.

Elodie Sanfins, Cecilia Augustsson, Björn Dahlbäck, Sara Linse, Tommy Cedervall

Research output: Contribution to journalArticlepeer-review

56 Citations (SciVal)


Nanoparticles (NPs) are increasingly used in diagnostic and drug delivery. After entering the bloodstream, a protein corona will form around NPs. The size and curvature of NPs is one of the major characteristics affecting the composition of bound protein in the corona. Key initiators of the intrinsic pathway of blood coagulation, the contact activation complex, (Kallikrein, Factor XII, and high molecular weight Kininogen) have previously been identified on NPs surfaces. We show that the functional impact of carboxyl-modified polystyrene NPs on these initiators of the intrinsic pathway is size dependent. NPs with high curvature affect the enzymatic activity differently from NPs with low curvature. The size dependency is evident in full blood plasma as well as in solutions of single coagulation factors. NPs induce significant alteration of the enzymatic activity in a size-dependent manner, and enzyme kinetics studies show a critical role for NPs surface area and curvature.
Original languageEnglish
Pages (from-to)4736-4744
JournalNano Letters
Issue number8
Publication statusPublished - 2014

Subject classification (UKÄ)

  • Nano Technology


Dive into the research topics of 'Size-Dependent Effects of Nanoparticles on Enzymes in the Blood Coagulation Cascade.'. Together they form a unique fingerprint.

Cite this