Abstract
Asymmetrical-flow field-flow fractionation combined with multiangle light scattering and refractive index detection has been revealed to be a powerful tool for starch characterization. It is based on size separation according to the hydrodynamic diameter of the starch components. Starch from a wide range of different botanical sources were studied, including normal starch and high-amylose and high-amylopectin starch. The starch was dissolved by heat treatment at elevated pressure in a laboratory autoclave. This gave clear solutions with no granular residues. Amylose retrogradation was prevented by using freshly dissolved samples. Programmed cross flow starting at 1.0 mL min(-1) and decreasing exponentially with a half-life of 4 min was utilised. The starches showed two size populations representing mainly amylose and mainly amylopectin with an overlapping region where amylose and amylopectin were possibly co-eluted. Most of the first population had molar masses below 10(6) g mol(-1), and most of the second size population had molar masses above 10(7) g mol(-1). Large differences were found in the relative amounts of the two populations, the molar mass, and hydrodynamic diameters, depending on the plant source and its varieties.
Original language | English |
---|---|
Pages (from-to) | 1455-1465 |
Journal | Analytical and Bioanalytical Chemistry |
Volume | 399 |
DOIs | |
Publication status | Published - 2011 |
Bibliographical note
The information about affiliations in this record was updated in December 2015.The record was previously connected to the following departments: Organic chemistry (S/LTH) (011001240), Department of Chemistry (011001220)
Subject classification (UKÄ)
- Analytical Chemistry