Small Skeletal Kinetic Reaction Mechanism for Ethylene-Air Combustion

Niklas Zettervall, Christer Fureby, Elna J.K. Nilsson

Research output: Contribution to journalArticlepeer-review

Abstract

Ethylene is a fuel considered for high-speed ram- and scramjet combustion applications, mainly because of the short ignition delay time resulting from its high reactivity. Further research and development on these combustion systems would benefit from simulations of large eddy (LES) type, which allow some chemical detail to accurately predict combustion characteristics and pollutant formation. In the present work, a chemical kinetic mechanism suitable for LES is presented, consisting of 66 irreversible reactions between 23 species. The mechanism is extensively validated for combustion characteristics related to ignition and flame propagation over a wide range of pressure, temperature, and equivalence ratios that previously published mechanism of this size have not covered. Agreement with a detailed reference mechanism is good for ignition delay, flame temperature, and laminar burning velocities. In addition, overall concentration profiles of major stable products are in overall good agreement with a reference mechanism. The skeletal mechanism shows an overall good performance in combination with a numerical stability and short computation time, making it highly suitable for combustion LES.

Original languageEnglish
Pages (from-to)14138-14149
Number of pages12
JournalEnergy and Fuels
Volume31
Issue number12
DOIs
Publication statusPublished - 2017 Dec 21

Subject classification (UKÄ)

  • Other Chemical Engineering

Fingerprint

Dive into the research topics of 'Small Skeletal Kinetic Reaction Mechanism for Ethylene-Air Combustion'. Together they form a unique fingerprint.

Cite this