Abstract
Soil moisture (SM) is of paramount importance in irrigation scheduling, infiltration, runoff, and agricultural drought monitoring. This work aimed at evaluating the performance of the classical ANFIS (Adaptive Neuro-Fuzzy Inference System) model as well as ANFIS coupled with three bio-inspired metaheuristic optimization methods including whale optimization algorithm (ANFIS-WOA), krill herd algorithm (ANFIS-KHA) and firefly algorithm (ANFIS-FA) in estimating SM. Daily air temperature, relative humidity, wind speed and sunshine hours data at Istanbul Bolge station in Turkey and soil temperature values measured over 2008–2009 were fed into the models under six different scenarios. ANFIS-WOA (RMSE = 1.68, MAPE = 0.04) and ANFIS (RMSE = 2.55, MAPE = 0.07) exhibited the best and worst performance in SM estimation, respectively. All three hybrid models (ANFIS-WOA, ANFIS-KHA and ANFIS-FA) improved SM estimates, reducing RMSE by 34, 28 and 27% relative to the base ANFIS model, respectively. A more detailed analysis of model performances in estimating moisture content over three intervals including [15–25), [25–35) and ≥35% revealed that ANFIS-WOA has had the lowest errors with RMSEs of 1.69, 1.89 and 1.55 in the three SM intervals, respectively. From the perspective of under- or over-estimation of moisture values, ANFIS-WOA (RMSE = 1.44, MAPE = 0.03) in under-estimation set and ANFIS-KHA (RMSE = 1.94, MAPE = 0.05) in over-estimation set showed the highest accuracies. Overall, all three hybrid models performed better in the underestimation set compared to overestimation set.
Original language | English |
---|---|
Pages (from-to) | 826-840 |
Number of pages | 15 |
Journal | Engineering Applications of Computational Fluid Mechanics |
Volume | 16 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2022 |
Bibliographical note
Publisher Copyright:© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
Subject classification (UKÄ)
- Water Engineering
- Physical Geography
Free keywords
- Hydrological modeling
- Artificial intelligence
- data-driven models
- meteorological variables
- soil moisture
- Water resources management