Spatiotemporal coupling of attosecond pulses

Hampus Wikmark, Chen Guo, Jan Vogelsang, Peter W. Smorenburg, Hélène Coudert-Alteirac, Jan Lahl, Jasper Peschel, Piotr Rudawski, Hugo Dacasa, Stefanos Carlström, Sylvain MacLot, Mette B. Gaarde, Per Johnsson, Cord L. Arnold, Anne L'Huillier

Research output: Contribution to journalArticlepeer-review

34 Citations (SciVal)

Abstract

The shortest light pulses produced to date are of the order of a few tens of attoseconds, with central frequencies in the extreme UV range and bandwidths exceeding tens of electronvolts. They are often produced as a train of pulses separated by half the driving laser period, leading in the frequency domain to a spectrum of high, odd-order harmonics. As light pulses become shorter and more spectrally wide, the widely used approximation consisting of writing the optical waveform as a product of temporal and spatial amplitudes does not apply anymore. Here, we investigate the interplay of temporal and spatial properties of attosecond pulses. We show that the divergence and focus position of the generated harmonics often strongly depend on their frequency, leading to strong chromatic aberrations of the broadband attosecond pulses. Our argument uses a simple analytical model based on Gaussian optics, numerical propagation calculations, and experimental harmonic divergence measurements. This effect needs to be considered for future applications requiring highquality focusing while retaining the broadband/ultrashort characteristics of the radiation.

Original languageEnglish
Pages (from-to)4779-4787
Number of pages9
JournalProceedings of the National Academy of Sciences of the United States of America
Volume116
Issue number11
DOIs
Publication statusPublished - 2019

Subject classification (UKÄ)

  • Atom and Molecular Physics and Optics

Keywords

  • Attosecond pulse
  • Focusing of XUV radiation
  • Gaussian optics
  • High-order harmonic generation
  • Spatiotemporal coupling

Fingerprint

Dive into the research topics of 'Spatiotemporal coupling of attosecond pulses'. Together they form a unique fingerprint.

Cite this