Abstract
Galerkin spectral approximation theory for non-self-adjoint quadratic operator polynomials with periodic coefficients is considered. The main applications are complex band structure calculations in metallic photonic crystals, periodic waveguides, and metamaterials. We show that the spectrum of the considered operator polynomials consists of isolated eigenvalues of finite multiplicity with a nonzero imaginary part. The spectral problem is equivalent to a non-compact block operator matrix and norm convergence is shown for a block operator matrix having the same generalized eigenvectors as the original operator. Convergence rates of finite element discretizations are considered and numerical experiments with the p-version of the finite element method confirm the theoretical convergence rates.
Original language | English |
---|---|
Pages (from-to) | 413-440 |
Number of pages | 28 |
Journal | Numerische Mathematik |
Volume | 126 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2014 Mar |
Externally published | Yes |
Subject classification (UKÄ)
- Computational Mathematics