TY - JOUR
T1 - Spike generation estimated from stationary spike trains in a variety of neurons in vivo
AU - Spanne, Anton
AU - Geborek, Pontus
AU - Bengtsson, Fredrik
AU - Jörntell, Henrik
PY - 2014
Y1 - 2014
N2 - To any model of brain function, the variability of neuronal spike firing is a problem that needs to be taken into account. Whereas the synaptic integration can be described in terms of the original Hodgkin-Huxley (H-H) formulations of conductance-based electrical signaling, the transformation of the resulting membrane potential into patterns of spike output is subjected to stochasticity that may not be captured with standard single neuron H-H models. The dynamics of the spike output is dependent on the normal background synaptic noise present in vivo, but the neuronal spike firing variability in vivo is not well studied. In the present study, we made long-term whole cell patch clamp recordings of stationary spike firing states across a range of membrane potentials from a variety of subcortical neurons in the non-anesthetized, decerebrated state in vivo. Based on the data, we formulated a simple, phenomenological model of the properties of the spike generation in each neuron that accurately captured the stationary spike firing statistics across all membrane potentials. The model consists of a parametric relationship between the mean and standard deviation of the inter-spike intervals, where the parameter is linearly related to the injected current over the membrane. This enabled it to generate accurate approximations of spike firing also under inhomogeneous conditions with input that varies over time. The parameters describing the spike firing statistics for different neuron types overlapped extensively, suggesting that the spike generation had similar properties across neurons.
AB - To any model of brain function, the variability of neuronal spike firing is a problem that needs to be taken into account. Whereas the synaptic integration can be described in terms of the original Hodgkin-Huxley (H-H) formulations of conductance-based electrical signaling, the transformation of the resulting membrane potential into patterns of spike output is subjected to stochasticity that may not be captured with standard single neuron H-H models. The dynamics of the spike output is dependent on the normal background synaptic noise present in vivo, but the neuronal spike firing variability in vivo is not well studied. In the present study, we made long-term whole cell patch clamp recordings of stationary spike firing states across a range of membrane potentials from a variety of subcortical neurons in the non-anesthetized, decerebrated state in vivo. Based on the data, we formulated a simple, phenomenological model of the properties of the spike generation in each neuron that accurately captured the stationary spike firing statistics across all membrane potentials. The model consists of a parametric relationship between the mean and standard deviation of the inter-spike intervals, where the parameter is linearly related to the injected current over the membrane. This enabled it to generate accurate approximations of spike firing also under inhomogeneous conditions with input that varies over time. The parameters describing the spike firing statistics for different neuron types overlapped extensively, suggesting that the spike generation had similar properties across neurons.
KW - spike firing statistics
KW - stochasticity
KW - spinal interneurons
KW - purkinje
KW - cells
KW - golgi cells
KW - molecular layer interneurons
KW - synaptic integration
KW - whole cell recordings in vivo
U2 - 10.3389/fncel.2014.00199
DO - 10.3389/fncel.2014.00199
M3 - Article
C2 - 25120429
SN - 1662-5102
VL - 8
JO - Frontiers in Cellular Neuroscience
JF - Frontiers in Cellular Neuroscience
M1 - 199
ER -