TY - JOUR
T1 - Stem cell factor induces HIF-1alpha at normoxia in hematopoietic cells.
AU - Pedersen, Malin
AU - Löfstedt, Tobias
AU - Sun, Jianmin
AU - Holmquist Mengelbier, Linda
AU - Påhlman, Sven
AU - Rönnstrand, Lars
PY - 2008
Y1 - 2008
N2 - Signaling by the receptor for stem cell factor (SCF), c-Kit, is of major importance for hematopoiesis, melanogenesis and reproduction, and the biological responses are commonly proliferation and cell survival. Thus, constitutive activation due to c-Kit mutations is involved in the pathogenesis of several forms of cancer, e.g. leukemias, gastrointestinal stromal tumors and testicular tumors. Tumor survival requires oxygen supply through induced neovascularization, a process largely mediated by the vascular endothelial growth factor (VEGF), a prominent target of the transcription factors hypoxia-inducible factor-1 (HIF-1) and HIF-2. Using Affymetrix microarrays we have identified genes that are upregulated following SCF stimulation. Interestingly, many of the genes induced were found to be related to a hypoxic response. These findings were corroborated by our observation that SCF stimulation of the hematopoietic cell lines M-07e induces HIF-1alpha and HIF-2alpha protein accumulation at normoxia. In addition, SCF-induced HIF-1alpha was transcriptionally active, and transcribed HIF-1 target genes such as VEGF, BNIP3, GLUT1 and DEC1, an effect that could be reversed by siRNA against HIF-1alpha. We also show that SCF-induced accumulation of HIF-1alpha is dependent on both the PI-3-kinase and Ras/MEK/Erk pathways. Our data suggest a novel mechanism of SCF/c-Kit signaling in angiogenesis and tumor progression.
AB - Signaling by the receptor for stem cell factor (SCF), c-Kit, is of major importance for hematopoiesis, melanogenesis and reproduction, and the biological responses are commonly proliferation and cell survival. Thus, constitutive activation due to c-Kit mutations is involved in the pathogenesis of several forms of cancer, e.g. leukemias, gastrointestinal stromal tumors and testicular tumors. Tumor survival requires oxygen supply through induced neovascularization, a process largely mediated by the vascular endothelial growth factor (VEGF), a prominent target of the transcription factors hypoxia-inducible factor-1 (HIF-1) and HIF-2. Using Affymetrix microarrays we have identified genes that are upregulated following SCF stimulation. Interestingly, many of the genes induced were found to be related to a hypoxic response. These findings were corroborated by our observation that SCF stimulation of the hematopoietic cell lines M-07e induces HIF-1alpha and HIF-2alpha protein accumulation at normoxia. In addition, SCF-induced HIF-1alpha was transcriptionally active, and transcribed HIF-1 target genes such as VEGF, BNIP3, GLUT1 and DEC1, an effect that could be reversed by siRNA against HIF-1alpha. We also show that SCF-induced accumulation of HIF-1alpha is dependent on both the PI-3-kinase and Ras/MEK/Erk pathways. Our data suggest a novel mechanism of SCF/c-Kit signaling in angiogenesis and tumor progression.
KW - Receptor
KW - tyrosine kinase
KW - Hypoxia
KW - HIF-1 alpha
KW - Affymetrix
KW - Stem cell factor
KW - c-Kit
U2 - 10.1016/j.bbrc.2008.09.102
DO - 10.1016/j.bbrc.2008.09.102
M3 - Article
C2 - 18834862
SN - 1090-2104
VL - 98
SP - 98
EP - 103
JO - Biochemical and Biophysical Research Communications
JF - Biochemical and Biophysical Research Communications
IS - 103
ER -