Strain engineering for stereoselective bioreduction of dicarbonyl compounds by yeast reductases

Ted Johanson, Michael Katz, Marie-Francoise Gorwa-Grauslund

Research output: Contribution to journalReview articlepeer-review


Pure chiral molecules are needed in the pharmaceutical and chemical industry as intermediates for the production of drugs or fine chemicals. Microorganisms represent an attractive alternative to chemical synthesis since they have the potential to generate single stereoisomers in high enantiomeric excess (ee). The baker's yeast Saccharomyces cerevisiae can notably reduce dicarbonyl compounds (in particular alpha- and beta-diketones and keto esters) to chiral alcohols with high ee. However, products are formed at a low rate. Moreover, large amounts of co-substrate are required for the regeneration of NADPH that is the preferred co-factor in almost all the known dicarbonyl reductions. Traditionally, better ee, reduction rate and product titre have been achieved via process engineering. The advent of recombinant DNA technology provides an alternative strategy to improve productivity and yield by strain engineering. This review discusses two aspects of strain engineering: (i) the generation of strains with higher reductase activity towards dicarbonyl compounds and (ii) the optimisation of co-substrate utilisation for NADPH cofactor regeneration. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Original languageEnglish
Pages (from-to)513-525
JournalFEMS Yeast Research
Issue number6-7
Publication statusPublished - 2005

Subject classification (UKÄ)

  • Industrial Biotechnology


Dive into the research topics of 'Strain engineering for stereoselective bioreduction of dicarbonyl compounds by yeast reductases'. Together they form a unique fingerprint.

Cite this