Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method

P ten Hoope-Bender, L. K. Bogart, O. Posth, W. Szczerba, Sarah E. Rogers, A. Castro, L. Nilsson, L. J. Zeng, A. Sugunan, J. Sommertune, A. Fornara, D. González-Alonso, L. Fernández Barquín, C. Johansson

Research output: Contribution to journalArticlepeer-review

Abstract

The structural and magnetic properties of magnetic multi-core particles were determined by numerical inversion of small angle scattering and isothermal magnetisation data. The investigated particles consist of iron oxide nanoparticle cores (9 nm) embedded in poly(styrene) spheres (160 nm). A thorough physical characterisation of the particles included transmission electron microscopy, X-ray diffraction and asymmetrical flow field-flow fractionation. Their structure was ultimately disclosed by an indirect Fourier transform of static light scattering, small angle X-ray scattering and small angle neutron scattering data of the colloidal dispersion. The extracted pair distance distribution functions clearly indicated that the cores were mostly accumulated in the outer surface layers of the poly(styrene) spheres. To investigate the magnetic properties, the isothermal magnetisation curves of the multi-core particles (immobilised and dispersed in water) were analysed. The study stands out by applying the same numerical approach to extract the apparent moment distributions of the particles as for the indirect Fourier transform. It could be shown that the main peak of the apparent moment distributions correlated to the expected intrinsic moment distribution of the cores. Additional peaks were observed which signaled deviations of the isothermal magnetisation behavior from the non-interacting case, indicating weak dipolar interactions.

Original languageEnglish
Article number45990
JournalScientific Reports
Volume7
DOIs
Publication statusPublished - 2017 Apr 11

Subject classification (UKÄ)

  • Metallurgy and Metallic Materials

Fingerprint

Dive into the research topics of 'Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method'. Together they form a unique fingerprint.

Cite this