Structure dependent effect of silicon on the oxidation of Al(111) and Al(100)

Milad G. Yazdi, Cláudio M. Lousada, Jonas Evertsson, Lisa Rullik, Markus Soldemo, Florian Bertram, Pavel A. Korzhavyi, Jonas Weissenrieder, Edvin Lundgren, Mats Göthelid

Research output: Contribution to journalArticlepeer-review

Abstract

The effect of sub-monolayer silicon on the oxidation of Al(111) and Al(100) surfaces was investigated using X-ray Photoelectron Spectroscopy (XPS) and density functional theory (DFT) calculations. On both surfaces the adatom site is preferred over substituting Si into the Al-lattice; on Al(100) the four fold hollow site is vastly favored whereas on Al(111) bridge and hollow sites are almost equal in energy. Upon O 2 exposure, Si is not oxidized but buried at the metal/oxide interface under the growing aluminum oxide. On Al(111), Si has a catalytic effect on both the initial oxidation by aiding in creating a higher local oxygen coverage in the early stages of oxidation and, in particular, at higher oxide coverages by facilitating lifting Al from the metal into the oxide. The final oxide, as measured from the Al2p intensity, is 25–30% thicker with Si than without. This observation is valid for both 0.1 monolayer (ML) and 0.3 ML Si coverage. On Al(100), on the other hand, at 0.16 ML Si coverage, the initial oxidation is faster than for the bare surface due to Si island edges being active in the oxide growth. At 0.5 ML Si coverage the oxidation is slower, as the islands coalesce and he amount of edges reduces. Upon oxide formation the effect of Si vanishes as it is overgrown by Al 2 O 3 , and the oxide thickness is only 6% higher than on bare Al(100), for both Si coverages studied. Our findings indicate that, in addition to a vanishing oxygen adsorption energy and Mott potential, a detailed picture of atom exchange and transport at the metal/oxide interface has to be taken into account to explain the limiting oxide thickness.

Original languageEnglish
Pages (from-to)1-11
Number of pages11
JournalSurface Science
Volume684
DOIs
Publication statusPublished - 2019

Subject classification (UKÄ)

  • Condensed Matter Physics

Free keywords

  • Aluminum
  • Density functional theory
  • Oxidation
  • Silicon
  • X-ray photoelectron spectroscopy

Fingerprint

Dive into the research topics of 'Structure dependent effect of silicon on the oxidation of Al(111) and Al(100)'. Together they form a unique fingerprint.

Cite this