Study of the material of the ATLAS inner detector for Run 2 of the LHC

M Aaboud, G Aad, B. Abbott, J Abdallah, O Abdinov, B Abeloos, Torsten Åkesson, Simona Bocchetta, Caterina Doglioni, Vincent Hedberg, Göran Jarlskog, Charles Kalderon, Else Lytken, Ulf Mjörnmark, Trine Poulsen, Oxana Smirnova, Oleksandr Viazlo, ATLAS Collaboration

Research output: Contribution to journalArticlepeer-review

Abstract

The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity s=13 TeV pp collision sample corresponding to around 2.0 nb-1 collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel region is studied using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation. © 2017 CERN.
Original languageEnglish
Article numberP12009
JournalJournal of Instrumentation
Volume12
Issue number12
DOIs
Publication statusPublished - 2017

Bibliographical note

Export Date: 10 January 2018

Subject classification (UKÄ)

  • Accelerator Physics and Instrumentation
  • Subatomic Physics

Free keywords

  • Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)
  • Particle tracking detectors
  • Performance of High Energy Physics Detectors
  • Charged particles
  • High energy physics
  • Photons
  • Readout systems
  • Silicon detectors
  • Tellurium compounds
  • Hadronic interactions
  • High energy physics detector
  • Modelling and simulations
  • Particle tracking
  • Reconstruction efficiency
  • Silicon strip tracker
  • Support structures
  • Transition radiation
  • Pixels

Fingerprint

Dive into the research topics of 'Study of the material of the ATLAS inner detector for Run 2 of the LHC'. Together they form a unique fingerprint.

Cite this