Subspace-Based Linear Multi-Step Predictors in Type 1 Diabetes Mellitus

Marzia Cescon, Rolf Johansson, Eric Renard

Research output: Contribution to journalArticlepeer-review

Abstract

A major challenge for a person with diabetes is to adapt insulin dosage regimens and food intake to keep blood glucose within tolerable limits during daily life activities. The early knowledge about the effects of inputs on glycemia would provide the patients with invaluable information for appropriate on-the-spot decision making concerning the management of the disease. Against this background, in this paper we propose multi-step data-driven predictors to the purpose of predicting blood glucose multiple steps ahead in the future, supporting therefore the patients when deciding upon treatments. We formulate the predictors based on the state-space construction step in subspace identification methods for linear systems. Physiological models from the literature were used to filter the raw information on carbohydrate and insulin intakes in order to retrieve the input signals to the predictors. The clinical data of 14 type 1 diabetic patients collected in hospital during a 3-days long visit were used. Half of the data were employed for predictor development and the remaining half for validation. Mean population prediction error standard deviation on 30 min, 60 min, 90 min, 120 min ahead prediction on validation data resulted in, respectively, 19.17 mg/dL, 37.99 mg/dL, 50.62 mg/dL and 58.06 mg/dL. (C) 2014 Elsevier Ltd. All rights reserved.
Original languageEnglish
Pages (from-to)99-110
JournalBiomedical Signal Processing and Control
Volume22
DOIs
Publication statusPublished - 2015

Subject classification (UKÄ)

  • Biomedical Laboratory Science/Technology

Free keywords

  • Subspace-based methods
  • Prediction theory
  • Diabetes

Fingerprint

Dive into the research topics of 'Subspace-Based Linear Multi-Step Predictors in Type 1 Diabetes Mellitus'. Together they form a unique fingerprint.
  • DIAdvisor

    Ståhl, F. (Researcher), Rönn, M. (Researcher), Cescon, M. (Researcher) & Johansson, R. (PI)

    2008/03/012012/02/29

    Project: Research

Cite this