Substrate specificity of acetyltransferase and reductase enzyme systems used in pheromone biosynthesis by Asian corn borer, Ostrinia furnacalis

Cheng Hua Zhao, Fang Lu, Marie Bengtsson, Christer Löfstedt

Research output: Contribution to journalArticlepeer-review

Abstract

The substrate specificity of the acetyltransferase and the reductase enzyme systems used by Ostrinia furnacalis (Lepidoptera: Pyralidae) in pheromone biosynthesis was studied in vivo by topical application of precursors to pheromone glands. Each of the tetradecenols, varying in double bond position (from 7 to 13) and geometry of the double bond, was converted to the corresponding acetate by the acetyltransferase. The similarity in the conversion rates of all tested fatty alcohols indicated that the acetyltransferase has a low substrate specificity. Most of the corresponding tetradecenoic acids could also be converted to the respective acetates. However, very different conversion rates among the tested fatty acids demonstrated that the reductase system has a higher substrate specificity than the acetyltransferase. The conversion rates of most E isomers were higher than those of the corresponding Z isomers, except for the (Δ)-11-tetradecenoic acids, in which much more Z isomer was converted to the product. Saturated tetradecanoic acid was converted to the corresponding acetate at a high rate; the shorter homolog, tridecanoic acid, was converted at a lower rate (56%), and conversion to the respective acetates of the longer homolog, pentadecanoic and hexadecanoic acids, was insignificant (<5%). The results from the present study showed that specificity of pheromone production is to a large extent controlled by the pheromone gland reductase system.

Original languageEnglish
Pages (from-to)1495-1510
JournalJournal of Chemical Ecology
Volume21
Issue number10
DOIs
Publication statusPublished - 1995 Oct 1

Subject classification (UKÄ)

  • Biological Sciences
  • Other Chemistry Topics

Free keywords

  • acetyltransferase
  • deuterium
  • gas chromatography-mass spectrometry
  • isomer specificity
  • Ostrinia furnacalis
  • Pheromone biosynthesis
  • reductase
  • toptical application

Fingerprint

Dive into the research topics of 'Substrate specificity of acetyltransferase and reductase enzyme systems used in pheromone biosynthesis by Asian corn borer, Ostrinia furnacalis'. Together they form a unique fingerprint.

Cite this