Abstract
We studied the solubilization of oil in the C16E8/hexadecane/H2O system. Close to the phase inversion temperature (PIT), the system, at equilibrium, can form either homogeneous states (i.e., microemulsions) at high surfactant concentrations or three-phase states at lower concentrations. We show that, under gentle shear, at a line we named the clearing boundary (CB), located a few degrees below the PIT, the system is homogeneous regardless of the surfactant concentration. We relate this shift of the microemulsion boundary to shear-induced disruption of the asymmetric bicontinuous structure. Although this state quickly relaxes to equilibrium when shear is stopped, we show that is still possible to trap it into a metastable state through a temperature quench. This method is the sub-PIT emulsification that we described in a previous work (Roger et al. Langmuir 2010, 26, 3860-3867).
Original language | English |
---|---|
Pages (from-to) | 10447-10454 |
Journal | Langmuir |
Volume | 27 |
Issue number | 17 |
DOIs | |
Publication status | Published - 2011 |
Subject classification (UKÄ)
- Physical Chemistry (including Surface- and Colloid Chemistry)