Surface acid property and its relation to SCR activity of phosphorus added to commercial V2O5(WO3)/TiO2 catalyst

H Kamata, K Takahashi, Ingemar Odenbrand

Research output: Contribution to journalArticlepeer-review

56 Citations (SciVal)

Abstract

To examine the influence of phosphorus on the commercial V2O5(WO3)/TiO2 SCR catalyst, measurements were carried out by means of infrared and Raman spectroscopy, XPS, and NO reduction measurement as a function of phosphorus loading. Phosphorus added to the catalyst was found to disperse well over the catalyst without a significant agglomeration up to 5 wt% P2O5 addition. The number of the hydroxyl groups bonded to the vanadium and titanium species decreased readily with increasing amount of phosphorus. Correspondingly the hydroxyl groups bonded to the phosphorus species were formed. NH3 adsorbed on both hydroxyl groups bonded to vanadium and phosphorus as ammonium ions, implying that the P-OH groups formed are also responsible for the Bronsted acidity. The NO reduction activity was found to be decreased with increasing amount of phosphorus; however, the influence of phosphorus was relatively small irrespective of the large amount of phosphorus addition. The deactivation might be caused by the change in the nature of the surface hydroxyl groups as Bronsted acid sites. Phosphorus species might partially wrap the surface V=O and W=O groups, which might also contribute to the deactivation.
Original languageEnglish
Pages (from-to)65-71
JournalCatalysis Letters
Volume53
Issue number1-2
DOIs
Publication statusPublished - 1998

Subject classification (UKÄ)

  • Chemical Engineering

Keywords

  • selective catalytic reduction
  • nitric oxide reduction
  • phosphorus
  • acid
  • property

Fingerprint

Dive into the research topics of 'Surface acid property and its relation to SCR activity of phosphorus added to commercial V2O5(WO3)/TiO2 catalyst'. Together they form a unique fingerprint.

Cite this