Research output per year
Research output per year
Giuseppe Abbondanza, Alfred Larsson, Weronica Linpé, Crispin Hetherington, Francesco Carlá, Edvin Lundgren, Gary S. Harlow
Research output: Contribution to journal › Article › peer-review
A high-throughput method for the fabrication of ordered arrays of Au nanoparticles is presented. It is based on pulsed electrodeposition into porous anodic alumina templates. In contrast to many synthesis routes, it is cyanide-free, prior separation of the alumina template from the aluminium substrate is not required, and the use of contaminating surfactants/capping agents often found in colloidal synthesis is avoided. The aspect ratio of the nanoparticles can also be tuned by selecting an appropriate electrodeposition time. We show how to fabricate arrays of nanoparticles, both with branched bases and with hemispherical bases. Furthermore, we compare the different morphologies produced with electron microscopies and grazing-incidence synchrotron X-ray diffraction. We find the nanoparticles are polycrystalline in nature and are compressively strained perpendicular to the direction of growth, and expansively strained along the direction of growth. We discuss how this can produce dislocations and twinning defects that could be beneficial for catalysis.
Original language | English |
---|---|
Pages (from-to) | 2452-2467 |
Number of pages | 16 |
Journal | Nanoscale Advances |
Volume | 4 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2022 May 9 |
Research output: Thesis › Doctoral Thesis (compilation)