TY - JOUR
T1 - The added value of ECG-gating for the diagnosis of myocardial infarction using myocardial perfusion scintigraphy and artificial neural networks
AU - Gjertsson, Peter
AU - Lomsky, Milan
AU - Richter, Jens
AU - Ohlsson, Mattias
AU - Tout, Deborah
AU - van Aswegen, Andries
AU - Underwood, Richard
AU - Edenbrandt, Lars
PY - 2006
Y1 - 2006
N2 - To assess the value of ECG-gating for the diagnosis of myocardial infarction using myocardial perfusion scintigraphy (MPS) and an artificial neural network. A total of 422 patients referred for MPS were studied using a one day Tc-99m-tetrofosmin protocol. Adenosine stress combined with submaximal dynamic exercise was used. The images were interpreted by one of three experienced clinicians and these interpretations regarding the presence or absence of myocardial infarction were used as the standard. A fully automated method using artificial neural networks was compared with the clinical interpretation. Either perfusion data alone or a combination of perfusion and function from ECG-gated images were used as input to different artificial neural networks. After a training session, the two types of neural networks were evaluated in separate test groups using an eightfold cross-validation procedure. The neural networks trained with both perfusion and ECG-gated images had a 4-7% higher specificity compared with the corresponding networks using perfusion data only, in four of five segments compared at the same level of sensitivity. The greatest improvement in specificity, from 70% to 77%, was seen in the inferior segment. In the septal and lateral segments the specificity rose from 73% to 77% and from 81% to 85%, respectively. In the anterior segment, the increase in specificity from 93% to 94% by adding functional data was not significant. The addition of functional information from ECG-gated MPS is of value for the diagnosis of myocardial infarction using an automated method of interpreting myocardial perfusion images.
AB - To assess the value of ECG-gating for the diagnosis of myocardial infarction using myocardial perfusion scintigraphy (MPS) and an artificial neural network. A total of 422 patients referred for MPS were studied using a one day Tc-99m-tetrofosmin protocol. Adenosine stress combined with submaximal dynamic exercise was used. The images were interpreted by one of three experienced clinicians and these interpretations regarding the presence or absence of myocardial infarction were used as the standard. A fully automated method using artificial neural networks was compared with the clinical interpretation. Either perfusion data alone or a combination of perfusion and function from ECG-gated images were used as input to different artificial neural networks. After a training session, the two types of neural networks were evaluated in separate test groups using an eightfold cross-validation procedure. The neural networks trained with both perfusion and ECG-gated images had a 4-7% higher specificity compared with the corresponding networks using perfusion data only, in four of five segments compared at the same level of sensitivity. The greatest improvement in specificity, from 70% to 77%, was seen in the inferior segment. In the septal and lateral segments the specificity rose from 73% to 77% and from 81% to 85%, respectively. In the anterior segment, the increase in specificity from 93% to 94% by adding functional data was not significant. The addition of functional information from ECG-gated MPS is of value for the diagnosis of myocardial infarction using an automated method of interpreting myocardial perfusion images.
KW - radionuclide imaging
KW - neural networks
KW - myocardial infarction
KW - image interpretation
KW - computer assisted
KW - heart function tests
U2 - 10.1111/j.1475-097X.2006.00694.x
DO - 10.1111/j.1475-097X.2006.00694.x
M3 - Article
SN - 1475-0961
VL - 26
SP - 301
EP - 304
JO - Clinical Physiology and Functional Imaging
JF - Clinical Physiology and Functional Imaging
IS - 5
ER -