The effect of ph and storage temperature on the stability of emulsions stabilized by rapeseed proteins

Karolina Östbring, María Matos, Ali Marefati, Cecilia Ahlström, Gemma Gutiérrez

Research output: Contribution to journalArticlepeer-review


Rapeseed press cake (RPC), the by-product of rapeseed oil production, contains proteins with emulsifying properties, which can be used in food applications. Proteins from industrially produced RPC were extracted at pH 10.5 and precipitated at pH 3 (RPP3) and 6.5 (RPP6.5). Emulsions were formulated at three different pHs (pH 3, 4.5, and 6) with soy lecithin as control, and were stored for six months at either 4 °C or 30 °C. Zeta potential and droplet size distribution were analyzed prior to incubation, and emulsion stability was assessed over time by a Turbiscan instrument. Soy lecithin had significantly larger zeta potential (−49 mV to 66 mV) than rapeseed protein (−19 mV to 20 mV). Rapeseed protein stabilized emulsions with smaller droplets at pH close to neutral, whereas soy lecithin was more efficient at lower pHs. Emulsions stabilized by rapeseed protein had higher stability during storage compared to emulsions prepared by soy lecithin. Precipitation pH during the protein extraction process had a strong impact on the emulsion stability. RPP3 stabilized emulsions with higher stability in pHs close to neutral, whereas the opposite was found for RPP6.5, which stabilized more stable emulsions in acidic conditions. Rapeseed proteins recovered from cold-pressed RPC could be a suitable natural emulsifier and precipitation pH can be used to monitor the stability in emulsions with different pHs.

Original languageEnglish
Article number1657
Issue number7
Publication statusPublished - 2021

Subject classification (UKÄ)

  • Food Engineering


  • Cold-pressed
  • Emulsifying properties
  • Emulsion stability
  • Rapeseed press cake
  • Turbiscan
  • Zeta potential


Dive into the research topics of 'The effect of ph and storage temperature on the stability of emulsions stabilized by rapeseed proteins'. Together they form a unique fingerprint.

Cite this