TY - JOUR
T1 - The genetic base for peanut height-related traits revealed by a meta-analysis
AU - Wang, Juan
AU - Yan, Caixia
AU - Shi, Dachuan
AU - Zhao, Xiaobo
AU - Yuan, Cuiling
AU - Sun, Quanxi
AU - Mou, Yifei
AU - Chen, Haoning
AU - Li, Yuan
AU - Li, Chunjuan
AU - Shan, Shihua
PY - 2021
Y1 - 2021
N2 - Peanut (Arachis hypogaea L.) is an important oilseed crop worldwide, and peanut height has been shown to be closely related to yield, therefore a better understanding of the genetic base of plant height-related traits may allow us to have better control of crop yield. Plant height-related traits are quantitative traits that are genetically controlled by many genes, and distinct quantitive trait loci (QTLs) may be identified for different peanut accessions/genotypes. In the present study, in order to gain a more complete picture of the genetic base for peanut height-related traits, we first make use of the high quality NGS sequence data for 159 peanut accessions that are available within our research groups, to carry out a GWAS study for searching plant height-related regions. We then perform a literature survey and collect QTLs for two plant height-related traits (Ph: peanut main stem height, and Fbl: the first branch length) from earlier related QTL/GWAS studies in peanut. In total, we find 74 and 21 genomic regions that are, associated with traits Ph and Fbl, respectively. Annotation of these regions found a total of 692 and 229 genes for, respectively, Ph and Fbl, and among those genes, 158 genes are shared. KEGG and GO enrichment analyses of those candidate genes reveal that Ph-and Fbl-associated genes are both enriched in the biosynthesis of secondary metabolites, some basic processes, pathways, or complexes that are supposed to be crucial for plant development and growth.
AB - Peanut (Arachis hypogaea L.) is an important oilseed crop worldwide, and peanut height has been shown to be closely related to yield, therefore a better understanding of the genetic base of plant height-related traits may allow us to have better control of crop yield. Plant height-related traits are quantitative traits that are genetically controlled by many genes, and distinct quantitive trait loci (QTLs) may be identified for different peanut accessions/genotypes. In the present study, in order to gain a more complete picture of the genetic base for peanut height-related traits, we first make use of the high quality NGS sequence data for 159 peanut accessions that are available within our research groups, to carry out a GWAS study for searching plant height-related regions. We then perform a literature survey and collect QTLs for two plant height-related traits (Ph: peanut main stem height, and Fbl: the first branch length) from earlier related QTL/GWAS studies in peanut. In total, we find 74 and 21 genomic regions that are, associated with traits Ph and Fbl, respectively. Annotation of these regions found a total of 692 and 229 genes for, respectively, Ph and Fbl, and among those genes, 158 genes are shared. KEGG and GO enrichment analyses of those candidate genes reveal that Ph-and Fbl-associated genes are both enriched in the biosynthesis of secondary metabolites, some basic processes, pathways, or complexes that are supposed to be crucial for plant development and growth.
KW - Meta-analysis
KW - Peanut
KW - Plant height
KW - Secondary metabolites
U2 - 10.3390/plants10061058
DO - 10.3390/plants10061058
M3 - Article
C2 - 34070508
AN - SCOPUS:85106413473
SN - 2223-7747
VL - 10
JO - Plants
JF - Plants
IS - 6
M1 - 1058
ER -