Abstract
The flash electroretinogram (ERG) was used to characterize the scotopic retinal function in a marsupial. Key parameter values of the a- and b-waves of adult male sugar gliders, Petaurus breviceps breviceps, elicited with ganzfeld flashes were determined under dark-and light-adapted conditions. Using standard histological methods, the thicknesses of the major layers of the retina were assessed to provide insight into the nature of the ERG responses. The ERG and histological results were compared to corresponding data for placental C57Bl/6 mice to establish whether the functional retinal specialization that underlies scotopic visual function in a marsupial parallels that of a placental mouse. The sensitivity of the a-wave assessed with the Lamb and Pugh (Invest Ophthalmol Vis Sci 47:5138-5152, 2006) "model" and that of the b-wave assessed with standard methods were lower in the sugar glider compared to the mouse. The thickness of the sugar glider retina was two-third of that of the mouse. The high-intensity flash ERG of the sugar glider substantially differed in shape from that of the mouse reflecting perhaps structural and functional differences between the two species at the level of the inner retina.
Original language | English |
---|---|
Pages (from-to) | 1043-1054 |
Journal | Journal of Comparative Physiology A |
Volume | 197 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2011 |
Subject classification (UKÄ)
- Ophthalmology
Free keywords
- Rod photoreceptors
- Rod ERG
- Marsupials
- Placental mammals
- Rod
- sensitivity