Three-pulse photon echo of an excitonic dimer modeled via Redfield theory

Pär Kjellberg, Tönu Pullerits

Research output: Contribution to journalArticlepeer-review

Abstract

In this article the third-order response of an excitonically coupled dimer is studied. The three-pulse photon echo signals were calculated by extracting polarization components from the total polarization in the corresponding phase-matched directions. The total nonlinear response was obtained by numeric propagation of the density matrix, with the exciton-vibrational coupling modeled via Redfield relaxation theory. The full two-dimensional three-pulse photon echo signals and the peak shift were analyzed in terms of the density-matrix dynamics of coherence dephasing and population relaxation. The location of the two-exciton state was found to be essential for proper modeling of the three-pulse photon echo. In particular, an oscillation in the three-pulse photon echo peak shift is found if the two-exciton state is displaced. The oscillations can be related to the dynamics of the one-exciton coherences. (c) 2006 American Institute of Physics.
Original languageEnglish
JournalJournal of Chemical Physics
Volume124
Issue number2
DOIs
Publication statusPublished - 2006

Bibliographical note

The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Chemical Physics (S) (011001060)

Subject classification (UKÄ)

  • Atom and Molecular Physics and Optics

Fingerprint

Dive into the research topics of 'Three-pulse photon echo of an excitonic dimer modeled via Redfield theory'. Together they form a unique fingerprint.

Cite this