TY - JOUR
T1 - Towards an integrated global framework to assess the impacts of land use and management change on soil carbon
T2 - Current capability and future vision
AU - Smith, Pete
AU - Davies, Christian A.
AU - Ogle, Stephen
AU - Zanchi, Giuliana
AU - Bellarby, Jessica
AU - Bird, Neil
AU - Boddey, Robert M.
AU - McNamara, Niall P.
AU - Powlson, David
AU - Cowie, Annette
AU - van Noordwijk, Meine
AU - Davis, Sarah C.
AU - Richter, Daniel De B.
AU - Kryzanowski, Len
AU - van Wijk, Mark T.
AU - Stuart, Judith
AU - Kirton, Akira
AU - Eggar, Duncan
AU - Newton-Cross, Geraldine
AU - Adhya, Tapan K.
AU - Braimoh, Ademola K.
PY - 2012
Y1 - 2012
N2 - Intergovernmental Panel on Climate Change (IPCC) Tier 1 methodologies commonly underpin project-scale carbon accounting for changes in land use and management and are used in frameworks for Life Cycle Assessment and carbon footprinting of food and energy crops. These methodologies were intended for use at large spatial scales. This can introduce error in predictions at finer spatial scales. There is an urgent need for development and implementation of higher tier methodologies that can be applied at fine spatial scales (e.g. farm/project/plantation) for food and bioenergy crop greenhouse gas (GHG) accounting to facilitate decision making in the land-based sectors. Higher tier methods have been defined by IPCC and must be well evaluated and operate across a range of domains (e.g. climate region, soil type, crop type, topography), and must account for land use transitions and management changes being implemented. Furthermore, the data required to calibrate and drive the models used at higher tiers need to be available and applicable at fine spatial resolution, covering the meteorological, soil, cropping system and management domains, with quantified uncertainties. Testing the reliability of the models will require data either from sites with repeated measurements or from chronosequences. We review current global capability for estimating changes in soil carbon at fine spatial scales and present a vision for a framework capable of quantifying land use change and management impacts on soil carbon, which could be used for addressing issues such as bioenergy and biofuel sustainability, food security, forest protection, and direct/indirect impacts of land use change. The aim of this framework is to provide a globally accepted standard of carbon measurement and modelling appropriate for GHG accounting that could be applied at project to national scales (allowing outputs to be scaled up to a country level), to address the impacts of land use and land management change on soil carbon.
AB - Intergovernmental Panel on Climate Change (IPCC) Tier 1 methodologies commonly underpin project-scale carbon accounting for changes in land use and management and are used in frameworks for Life Cycle Assessment and carbon footprinting of food and energy crops. These methodologies were intended for use at large spatial scales. This can introduce error in predictions at finer spatial scales. There is an urgent need for development and implementation of higher tier methodologies that can be applied at fine spatial scales (e.g. farm/project/plantation) for food and bioenergy crop greenhouse gas (GHG) accounting to facilitate decision making in the land-based sectors. Higher tier methods have been defined by IPCC and must be well evaluated and operate across a range of domains (e.g. climate region, soil type, crop type, topography), and must account for land use transitions and management changes being implemented. Furthermore, the data required to calibrate and drive the models used at higher tiers need to be available and applicable at fine spatial resolution, covering the meteorological, soil, cropping system and management domains, with quantified uncertainties. Testing the reliability of the models will require data either from sites with repeated measurements or from chronosequences. We review current global capability for estimating changes in soil carbon at fine spatial scales and present a vision for a framework capable of quantifying land use change and management impacts on soil carbon, which could be used for addressing issues such as bioenergy and biofuel sustainability, food security, forest protection, and direct/indirect impacts of land use change. The aim of this framework is to provide a globally accepted standard of carbon measurement and modelling appropriate for GHG accounting that could be applied at project to national scales (allowing outputs to be scaled up to a country level), to address the impacts of land use and land management change on soil carbon.
KW - Land use
KW - Land use change
KW - Model
KW - Monitoring
KW - Soil carbon
U2 - 10.1111/j.1365-2486.2012.02689.x
DO - 10.1111/j.1365-2486.2012.02689.x
M3 - Article
SN - 1354-1013
VL - 18
SP - 2089
EP - 2101
JO - Global Change Biology
JF - Global Change Biology
IS - 7
ER -