TY - JOUR
T1 - Two mass-spectrometric techniques for quantifying serine enantiomers and glycine in cerebrospinal fluid
T2 - Potential confounders and age-dependent ranges
AU - Fuchs, Sabine A.
AU - De Sain-van Der Velden, Monique G.M.
AU - De Barse, Martina M.J.
AU - Roeleveld, Martin W.
AU - Hendriks, Margriet
AU - Dorland, Lambertus
AU - Klomp, Leo W.J.
AU - Berger, Ruud
AU - De Koning, Tom J.
PY - 2008/8/9
Y1 - 2008/8/9
N2 - BACKGROUND: The recent discovery and specific functions of D-amino acids in humans are bound to lead to the revelation of D-amino acid abnormalities in human disorders. Therefore, high-throughput analysis techniques are warranted to determine D-amino acids in biological fluids in a routine laboratory setting. METHODS: We developed 2 chromatographic techniques, a nonchiral derivatization with chiral (chirasil-L-val column) separation in a GC-MS system and a chiral derivatization with Marfey's reagent and LC-MS analysis. We validated the techniques for D-serine, L-serine, and glycine determination in cerebrospinal fluid (CSF), evaluated several confounders, and determined age-dependent human concentration ranges. RESULTS: Quantification limits for D-serine, L-serine, and glycine in cerebrospinal fluid were 0.14, 0.44, and 0.14 μmol/L, respectively, for GC-MS and 0.20, 0.41, and 0.14 μmol/L for LC-MS. Within-run imprecision was <3% for both methods, and between-run imprecision was <13%. Comparison of both techniques with Deming regression yielded coefficients of 0.90 (Dserine), 0.92 (L-serine), and 0.96 (glycine). Sample collection, handling, and transport is uncomplicated - there is no rostrocaudal CSF gradient, no effect of storage at 4 °C for 1 week before storage at -80 °C, and no effect of up to 3 freeze/thaw cycles. Conversely, contamination with erythrocytes increased D-serine, L-serine, and glycine concentrations. CSF concentrations for 145 apparently healthy controls demonstrated markedly and specifically increased (5 to 9 times) D-serine concentrations during early central nervous system development. CONCLUSIONS: These 2 clinically applicable analysis techniques will help to unravel pathophysiologic, diagnostic, and therapeutic issues for disorders associated with central nervous system abnormalities, NMDA-receptor dysfunction, and other pathology associated with D-amino acids.
AB - BACKGROUND: The recent discovery and specific functions of D-amino acids in humans are bound to lead to the revelation of D-amino acid abnormalities in human disorders. Therefore, high-throughput analysis techniques are warranted to determine D-amino acids in biological fluids in a routine laboratory setting. METHODS: We developed 2 chromatographic techniques, a nonchiral derivatization with chiral (chirasil-L-val column) separation in a GC-MS system and a chiral derivatization with Marfey's reagent and LC-MS analysis. We validated the techniques for D-serine, L-serine, and glycine determination in cerebrospinal fluid (CSF), evaluated several confounders, and determined age-dependent human concentration ranges. RESULTS: Quantification limits for D-serine, L-serine, and glycine in cerebrospinal fluid were 0.14, 0.44, and 0.14 μmol/L, respectively, for GC-MS and 0.20, 0.41, and 0.14 μmol/L for LC-MS. Within-run imprecision was <3% for both methods, and between-run imprecision was <13%. Comparison of both techniques with Deming regression yielded coefficients of 0.90 (Dserine), 0.92 (L-serine), and 0.96 (glycine). Sample collection, handling, and transport is uncomplicated - there is no rostrocaudal CSF gradient, no effect of storage at 4 °C for 1 week before storage at -80 °C, and no effect of up to 3 freeze/thaw cycles. Conversely, contamination with erythrocytes increased D-serine, L-serine, and glycine concentrations. CSF concentrations for 145 apparently healthy controls demonstrated markedly and specifically increased (5 to 9 times) D-serine concentrations during early central nervous system development. CONCLUSIONS: These 2 clinically applicable analysis techniques will help to unravel pathophysiologic, diagnostic, and therapeutic issues for disorders associated with central nervous system abnormalities, NMDA-receptor dysfunction, and other pathology associated with D-amino acids.
U2 - 10.1373/clinchem.2007.100412
DO - 10.1373/clinchem.2007.100412
M3 - Article
C2 - 18606633
AN - SCOPUS:51349162646
SN - 0009-9147
VL - 54
SP - 1443
EP - 1450
JO - Clinical Chemistry
JF - Clinical Chemistry
IS - 9
ER -