Ultrafast charge transfer dynamics in 2D covalent organic frameworks/Re-complex hybrid photocatalyst

Qinying Pan, Mohamed Abdellah, Yuehan Cao, Weihua Lin, Yang Liu, Jie Meng, Quan Zhou, Qian Zhao, Xiaomei Yan, Zonglong Li, Hao Cui, Huili Cao, Wenting Fang, David Ackland Tanner, Mahmoud Abdel-Hafiez, Ying Zhou, Tonu Pullerits, Sophie E. Canton, Hong Xu, Kaibo Zheng

Research output: Contribution to journalArticlepeer-review


Rhenium(I)-carbonyl-diimine complexes have emerged as promising photocatalysts for carbon dioxide reduction with covalent organic frameworks recognized as perfect sensitizers and scaffold support. Such Re complexes/covalent organic frameworks hybrid catalysts have demonstrated high carbon dioxide reduction activities but with strong excitation energy-dependence. In this paper, we rationalize this behavior by the excitation energy-dependent pathways of internal photo-induced charge transfer studied via transient optical spectroscopies and time-dependent density-functional theory calculation. Under band-edge excitation, the excited electrons are quickly injected from covalent organic frameworks moiety into catalytic RheniumI center within picosecond but followed by fast backward geminate recombination. While under excitation with high-energy photon, the injected electrons are located at high-energy levels in RheniumI centers with longer lifetime. Besides those injected electrons to RheniumI center, there still remain some long-lived electrons in covalent organic frameworks moiety which is transferred back from RheniumI. This facilitates the two-electron reaction of carbon dioxide conversion to carbon monoxide.

Original languageEnglish
Article number845
JournalNature Communications
Issue number1
Publication statusPublished - 2022

Subject classification (UKÄ)

  • Physical Chemistry


Dive into the research topics of 'Ultrafast charge transfer dynamics in 2D covalent organic frameworks/Re-complex hybrid photocatalyst'. Together they form a unique fingerprint.

Cite this